【算法理论】N NP NPC 问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010900754/article/details/53938860

算法分析中会把问题分为若干类。

P问题:指存在多项式时间解法的问题,比如二分查找

NP问题:指存在多项式时间验证的问题,比如独立集问题,是否存在size至少为k的独立集,那么随便给定一个k大小的点集,验证是否为独立集肯定是多项式时间可以完成的。而且在NP中,一般都是针对判定性问题,即把一个optimization的问题转化为decision的问题。也就是说我们要解决一个optimiazation的问题,比如说找最大的独立集。那么可以转化为是否存在size至少为k的独立集,然后我们对所有可能的k进行判断就可以,当然这里可以使用二分法。

P问题一定是NP的,因为只需要判定给定的解是否等于计算得到的解就可以。

在可解性的研究中,人们感兴趣的是NP是否等于P,即我们目前没有找到多项式解法的问题是否真的有这样的解。针对这样的思考,人们引入了NPC的概念。

NPC:指所有的NP问题都可以多项式规约到它的问题。简单来讲就是NP中最难的问题,只要这个有多项式解,那么其余的NP都有。

这里的多项式规约是说,比如A问题可以多项式规约到B,那么A的解决可以通过多项式次调用B来解决,而且这里B的解法也要求是多项式的。那么借助B,A可以多项式解决。举个例子,比如独立集规约到顶点覆盖。对于一个graph G=(V,E),如果S是顶点覆盖,那么V-S就是独立集。

一些简单结论:(1)NPC问题同样难,(2)只要有一个NPC多项式可解,那么全部NPC多项式可解,即N=NP。

那么给定一个问题,我们如何证明它是NPC?

(1)首先要证明它是NP问题,给出多项式验证程序。

(2)证明是NP-hard,找一个已知的NPC,证明这个NPC可以多项式规约到该问题

什么是NP-hard?简单来说就是至少比NPC问题还要难的问题,也即,有一个NPC的问题可以被归约到这个问题。但是不要求存在多项式验证算法,所以不一定是NP问题,可能是指数级别。因此这里的(1)(2)一起可以证明是NPC问题。

那么如何证明NPC可以归约到这个问题?这是一个难点,我们首先要找到合适的NPC问题,然后指出任意一个这个NPC问题的实例均可以转化成一个(并不要求全部)这个问题的实例。选择合适的NPC问题会简化这个转换,不合适可能都无法构建转换。最后需要证明这个转换本身是多项时间的。

展开阅读全文

没有更多推荐了,返回首页