感知机算法

1 目标
感知机算法针对二分类问题

f(X):X{1,+1}(1)

实质在于对于线性可分的数据集

(xi0,xi1,...,xin;yi)=(Xi;Yi),i=0,1,2,...,m(2)

找到一个超平面 ωx+b=0 将数据分成两部分,使得位于位于超平面上半部分的数据点属于 +1 类,处于超平面下半空间的数据点属于 1 类。

2 优化模型

确定学习策略 —-定义(经验)损失函数将其最小化

分析:
(1) 由于我们的目标是找到一个超平面将数据完分开,标签为 +1 的样本都处于超平面的上半空间,标签为-1 的样本都处于超平面下半空间,自然想到目标损失函数迫使误分类的数据点数降到0,表示成数学形式如下:

L(x;ω,b)=i=1NI[sign(ωx+b)yi](3)

但是这个损失函数 L 不是参数ω,b的连续可导函数,不易求解,因此不能采用这样的函数。
(2)损失函数另一种取法是误分类点到超平面的距离,则可写作

L(x;ω,b)=xiM|ωxi+b|||ω||(4)

式中 M 是误分点的集合。若M=,则 L=0 ,否则 L>0
为了便于求解(4)式,需要对其进行等效处理。首先要处理掉 | | ωxi+b 表示的是点 xi 到超平面的相对距离;

(Xi,+1)(ωxi+b>0)(Xi,1)(ωxi+b<0)}yi(ωxi+b)>0(5)

这是数据点 xi 被超平面分类正确的情况。相反,数据点被超平面错分时:

(Xi,1)(ωxi+b>0)(Xi,+1)(ωxi+b<0)}yi(ωxi+b)<0(6)

则当样本被错分时,有 yi(ωx+b)>0 ,因此,(4) 式被等效地变为

L(x;ω,b)=1||ω||xiMyi(ωxi+b)(7)

学习模型就是将损失函数最小化,即

minω,bL(x;ω,b)=minω,b1||ω||xiMyi(ωxi+b)(8)

3 优化模型求解

上面已经将损失函数造好,下面就需要求解,不过求解之前对(8)式仍需做简单的处理,项 1||ω|| 不影响问题的最优解,而优化参数又处于分母,所以将其去掉,(8)式重新写作

minω,bxiMyi(ωxi+b)(9)

这是典型的多元函数求极值问题,用最速下降法即可高效求解。具体地,每一步使得参数 ω^=(ω,b) 沿着其在损失函数的负梯度方向调整,即可快速求得最优解。

未完待续….

reference:

统计学习方法\李航

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值