1 目标
感知机算法针对二分类问题
实质在于对于线性可分的数据集
找到一个超平面 ωx+b=0 将数据分成两部分,使得位于位于超平面上半部分的数据点属于 +1 类,处于超平面下半空间的数据点属于 −1 类。
2 优化模型
确定学习策略 —-定义(经验)损失函数并将其最小化。
分析:
(1) 由于我们的目标是找到一个超平面将数据完分开,标签为
+1
的样本都处于超平面的上半空间,标签为-1 的样本都处于超平面下半空间,自然想到目标损失函数迫使误分类的数据点数降到0,表示成数学形式如下:
但是这个损失函数
L
不是参数
(2)损失函数另一种取法是误分类点到超平面的距离,则可写作
式中
M
是误分点的集合。若
为了便于求解(4)式,需要对其进行等效处理。首先要处理掉
“| |”
,
ωxi+b
表示的是点
xi
到超平面的相对距离;
这是数据点
xi
被超平面分类正确的情况。相反,数据点被超平面错分时:
则当样本被错分时,有 −yi(ωx+b)>0 ,因此,(4) 式被等效地变为
学习模型就是将损失函数最小化,即
3 优化模型求解
上面已经将损失函数造好,下面就需要求解,不过求解之前对(8)式仍需做简单的处理,项 1||ω|| 不影响问题的最优解,而优化参数又处于分母,所以将其去掉,(8)式重新写作
这是典型的多元函数求极值问题,用最速下降法即可高效求解。具体地,每一步使得参数 ω^=(ω,b) 沿着其在损失函数的负梯度方向调整,即可快速求得最优解。
未完待续….
reference:
统计学习方法\李航