在GF(2^8)下可做任意两个数乘法的程序

作业要求:

写一个GF(2^8)下可做任意两个数乘法的程序。

GF(2^8),也就是在一个字节上所做的乘法和加法都封闭的一个有限域。

在GF(2^8)上只有两种运算:异或加运算和乘法运算。

其中异或加运算就是1 xor 1 = 0, 0 xor 0 = 0, 1 xor 0 = 1。(原谅我的啰嗦)

乘法运算的规则就是:

(1)A * 2的时候,A左移一位;A * 4 = (A * 2) * 2,A * 8 = ((A * 2) * 2) * 2,容易看出乘上2的n次幂是一个不断迭代的过程。

(2)那么A * 6的情况有如何?很简单,A * 6 = (A * 2) xor (A * 4),注意在该域中加法都是xor运算,而不是算术加运算。另外,可能有人会问:A * 4 = (A * 2) xor (A * 2) = 0,这不是和(1)冲突了吗?

原因在于:A * 6 = A * 00000110,其中00000110 = 00000100 xor 00000010,但是A * 4 = A * 00000100,00000100 != 00000010 xor 00000010 (= 00000000)。

(3)在乘法运算中,若乘数左移结果中第8位左边非0,例如10000000 * 00000100 = 10000000 * 2 * 2,其中10000000 * 2 = (1)00000000,结果溢出,所以要再和1BH进行异或加运算,即结果为00000000 xor 00011011 = 00011011。然后00011011 * 2 = 00110110即为结果。

错误做法:10000000 * 4 = (10)00000000 xor 00011011 = 00011011,为什么呢?因为10000000 * 2已经溢出,要先做溢出处理。

注:为什么是1BH?因为在AES的设计中开发者选用了不可约多项式m(x) = x^8 + x^4 + x^3 + x + 1,所以如果结果溢出就要再xor一个00011011(也就是1BH)。


在基本的运算法则搞懂以后,写程序就很简单了。

最近写OC写了很多,Java上学期也一直在写,反而C++好久没写了,突然又用回C++来写程序,还真的差点没转过弯来。所以现在趁着写博客的机会做下笔记。

好吧,回到程序来。

先来看看主函数,大致看看整个程序的流程:

int main()
{   
	int a[8], b[8], c[8], i=0;
	LARGE_INTEGER start_t, stop_t, freq; // start_t表示计时开始时间,stop_t表示计时结束时间,freq为计时器的时钟频率
	double exe_time;
	QueryPerformanceFrequency(&freq);
	// fprintf(stdout, "The frequency of your pc is %d.\n", freq.QuadPart);

	char ch='y';
	while(ch=='y'||ch=='Y')
	{
		//  -- 清空之前的计算结果 --
		for(i=0; i<8; i++)
		{
			c[i]=0; // 清空结果
		}
		state=0; // 清空当前左移位数

		//  -- 输入乘数a和b --
		if(input(a, 'a')==0) // 如果输入a没有出错
		{
			if(input(b, 'b')==0) // 如果输入b没有出错
			{
				//  -- 程序开始执行,开始计时 --
				QueryPerformanceCounter(&start_t);

				//  -- 执行乘法运算 --
				for(i=7; i>=0; i--)
				{
					if(b[i]==1)
					{
						xor(c, leftshift(a, 7-i)); // 求和
					}
				}

				//  -- 输出运算结果 --
				cout<<"运算结果为:";
				for(i=0; i<8; i++)
				{
					cout<<c[i];
				}

				//  -- 程序结束执行,结束计时 --
				QueryPerformanceCounter(&stop_t);
				exe_time = 1e3*(stop_t.QuadPart-start_t.QuadPart)/freq.QuadPart;
				cout<<endl;
				fprintf(stdout, "计算用时:%fms.\n", exe_time);
			}
		}

		//  -- 是否继续执行程序 --
		cout<<endl<<"是否继续?y/n:";
		ch=cin.get();
		if(cin.get()==10)
		{
			// 跳过输入y/n后的回车键,防止影响下面的输入
		}
	}

	return 0;
}

结构非常清晰:清空之前的运算结果 —— 输入乘数a和b —— 执行乘法运算a * b —— 输出运算结果c以及计算时间  —— 是否循环执行。

首先来看看封装好的输入函数:

/* 
 * 分别输入两个GF(8)内的乘数 
 * 参数temp[]用于保存输入的二进制数组
 * 参数name为变量名称,如a,b
 * 返回类型为输入后的状态,若为0则成功,若非0则出错
 */
int input(int temp[], char name)
{
	char c;
	int i=0;
	cout<<"请按8位二进制格式输入乘数"<<name<<",以回车结束:";
	c=cin.get();
	while(c!=10) // 若输入的不是回车
	{
		switch(c)
		{
		case '0':temp[i++]=0;break;
		case '1':temp[i++]=1;break;
		default:
			cout<<"程序出错:数字输入错误,不是0或1";
			cin.ignore((numeric_limits<streamsize>::max)(),'\n'); // 清除输入缓冲区中的所有内容
			return 1;
		}

		c=cin.get();
		if(c==10&&i!=8)
		{
			cout<<"程序出错:输入的数位数不等于8";
			return 2;
		}
	}
	return 0;
}

注意输入的数由于要在GF(2^8)内,所以必须符合要求:8位,每一位都是0或1,例如00000010。

若输入错误可以直接exit程序,这里做成了回调错误状态到主函数并询问是否重新输入的循环形式。


在讲解执行a * b之前,先看看xor运算:

/* 对a和b进行异或求和运算 */
void xor(int a[], int b[])
{
	for(int i=0; i<8; i++)
	{
		a[i]=bitxor(a[i], b[i]);
	}
}

/* 按位进行异或求和运算 */
int bitxor(int a, int b)
{
	if(a==b)
	{
		return 0;
	}
	else 
	{
		return 1;
	}
}

xor()是对一个字节的a[8]和b[8]进行xor求和,结果保存到a[8]中。

bitxor()是逐位相与。


再看看求和语句:

//  -- 执行乘法运算 --
for(i=7; i>=0; i--)
{
     if(b[i]==1)
     {
	xor(c, leftshift(a, 7-i)); // 求和
     }
}

看看关键的leftshift函数:

/* 
 * 计算a[]乘上2的len次幂的结果, len为左移的位数
 * 参数temp[]用于保存移位后的数组,用于迭代进行下一次移位
 * 参数len为左移的位数,例如10000000的左移位数为7
 * state用于保存temp对应的左移位数
 * 返回结果为移位后的数组
 */
int *leftshift(int temp[], int len)
{
	if(len==0)
	{
		state=0;
		return temp;
	}

	// 由于temp保存了之前的位移结果,所以只需要左移len-state位
	for(state; state<len; state++)
	{
		shift1(temp); // 乘2,或者说左移1位(包含溢出处理)
	}

	return temp;
}

为了说明该算法的思想, 首先举个例子:对于a * 00001100 = (a * 00001000) xor (a * 00000100),这时有两种计算方法(假设一次乘法或一次加法为1次计算):

(1)计算a * 00000100得结果a left shift 2,再计算a * 00001000得结果a leftshift 3,然后得a = (a left shift 2) xor (a left shift 3)。

计算次数为 2 + 3 + 1 + 溢出的加法次数x = 6 + x。

(2)在(1)的基础上,注意到a left shift 3 = (a left shift 2) * 2,所以我们可以先计算a left shift 2,然后使用a left shift 2的结果乘2(只需要1次乘法)得到结果a left shift 3,这样就避免了在计算a left shift 3时又要从a计算起。

计算次数为 2 + 1 + 1 + 溢出的加法次数y = 4 + y。

明显地,y <= x,也就是方法(2)的运算效率高于方法(1)。

在本程序中,对于a[8] * b[8],我们从b[7]计算到b[0],也就是a[8] * 2的次数从0一直计算到7,其中每次乘法都运用了之前乘法运算保存的结果,该结果由temp数组保存,state则保存了temp数组对应的移位次数,len为本次乘法原来需要乘2的次数(这里乘2和左移是一致的,在讲述时忽略溢出的处理情况)。其中state为全局静态变量,初始为0:

static state=0; // 用于记录左移的位数
还有左移1位(乘2)的函数shift1:

/* 乘2,左移1位,如果溢出则异或1BH */
void shift1(int a[])
{
	int temp=a[0];
	for(int i=0; i<7; i++)
	{
		a[i]=a[i+1];
	}
	a[7]=0;

	if(temp==1) // 溢出处理
	{
		int mod[8]={0, 0, 0, 1, 1, 0, 1, 1};
		xor(a, mod);
	}
}


最后输出c,即运算结果,以及计算所用时间(由于要与后面博客中的查表乘法运算的效率相比较)。


还是Run一下吧,写博客的习惯:





好久没写C++,小小回顾一下:

1.若要在主函数中调用其它函数,必须将该函数放在主函数之前,或者提前做好函数声明,例如:

#include <iostream>
#include <limits> // numeric_limits
#include <windows.h>
using namespace std;
int input(int temp[], char name);
void xor(int a[], int b[]);
int bitxor(int a, int b);
int *leftshift(int temp[], int len);
void shift1(int a[]);


2.判断输入是否按了回车换行,可以通过以下方法:

c=cin.get();
while(c!=10)
{
}
其中10(0AH)对应的ACII码为换行。

其中语句cin.get()对应一次输入,而不是上一次的输入。


3.如果要强制退出程序,可以直接使用exit(1)退出,而不需要回调数据到main函数再return。


4.调用函数时数组可以直接作为参数传值:int(a[], b[])。


5.当函数的返回类型是数组时,可以首先在函数中声明一个数组指针:

int *shift=new int[8];

在写程序时没有声明长度,结果一直弹出Debug Assertion Failed!的错误。

在函数结束时返回该指针:

return shift;

注意shift必须new,否则返回的指针所指向的数组可能其值全部为负最大值。

函数声明:

int *leftshift(int a[], int len);


6.如果要清空输入缓冲区中的内容,可以使用以下方法:

cin.ignore(numeric_limits<streamsize>::max(),'\n'); // 清除输入缓冲区中的所有内容

注意必须导入头文件

#include <limits> // numeric_limits 


关于limits的max()和windows.h冲突的解决方法见numeric_limits::max()和windows.h冲突的解决方法


7.计算程序运行时间的方法:

(1)使用time.h给出的函数

首先导入头文件:

#include <time.h>


声明变量如下:

time_t start,end,time; // 计时所用的变量名称

开始计时:

//  -- 程序开始执行,开始计时 --
start=clock();


计时结束:

//  -- 程序结束执行,结束计时 --
end=clock();
time=end-start; // 这里的时间是计算机内部时间
cout<<endl<<"程序用时:"<<time<<endl;

(2)使用windows.h给出的函数

详见C/C++ 各种计时函数总结



这学期密码学关于编程的作业好像还挺多的,所以专门开个类别写些博客来记录,这篇博客可能还没涉及到密码安全学方面的问题,但随着课程的深入,肯定会有更多与这方面相关的内容(表示压力很大),我会继续写博客更新的。










评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值