GF(2^8)的加法与乘法计算

        准备密码学考试的时候,看AES有GF(2^8)上面的计算,刚开始书上的计算方法,没太看懂,又看了看信息安全数学基础的课本,总结了一下在GF(2^8)域上的加法与乘法计算。我们以既约多项式(不可以分解为两个多项式的乘积了)X^8+X^4+X^3+X+1为例。

下面是我手写的过程(字体忽略)

2.就是用长除法对多项式求模了

3.长除法之后得到的余数就是多项式模X^8+X^4+X^3+X+1的结果。

### GF(2^8)有限域上的二元运算实现方法 #### 加法运算 在有限域 \( \text{GF}(2^8) \) 中,加法运算是通过按位异或操作完成的。由于该域中的元素表示为长度为 8 的比特序列(即字节),因此两个元素相加的结果可以通过简单的 XOR 运算得出[^2]。 ```python def gf_add(a, b): return a ^ b ``` 此函数接受两个整数值 `a` 和 `b`,分别代表 \( \text{GF}(2^8) \) 域中的两个元素,并返回其按位异或结果作为加法结果。 --- #### 乘法运算 \( \text{GF}(2^8) \) 上的乘法涉及多项式模运算以及不可约多项式的定义。假设选定的不可约多项式为 \( P(x) = x^8 + x^4 + x^3 + x + 1 \),对应的十进制值为 283(0x1B)。以下是具体实现: 1. 将输入的两个八位数视为多项式系数。 2. 对这两个多项式执行标准的多项式乘法。 3. 如果结果的阶次超过 7,则将其对不可约多项式取模。 下面是 Python 实现代码: ```python MODULUS = 0x1B # 不可约多项式对应值 MASK = 0xFF # 确保结果保持在 8 位范围内 def gf_mul(a, b): result = 0 while b != 0: if b & 1: # 如果最低位为 1 result ^= a # 执行按位异或 high_bit_set = a & 0x80 # 检查最高位是否被设置 a <<= 1 # 左移一位 if high_bit_set: # 如果溢出了 8 位范围 a ^= MODULUS # 使用不可约多项式进行调整 b >>= 1 # 右移一位处理下一位 return result & MASK ``` 上述代码实现了 \( \text{GF}(2^8) \) 下的乘法逻辑。它逐步模拟了多项式乘法的过程并应用了必要的模运算来确保结果始终位于 \( \text{GF}(2^8) \)[^4]。 --- #### 示例验证 以下是一个完整的测试案例,展示如何使用上述函数计算加法乘法: ```python if __name__ == "__main__": a = int('1D', 16) # 十六进制转换为整数 b = int('F3', 16) add_result = gf_add(a, b) mul_result = gf_mul(a, b) print(f"{hex(a)} + {hex(b)} = {hex(add_result)}") # 输出加法结果 print(f"{hex(a)} * {hex(b)} = {hex(mul_result)}") # 输出乘法结果 ``` 运行这段代码可以观察到具体的加法乘法结果。 --- #### 总结 通过对 \( \text{GF}(2^8) \) 基本原理的理解及其运算规则的应用,能够高效地实现加法乘法两种基本二元运算。其中,加法依赖于简单高效的 XOR 操作,而乘法则需要考虑不可约多项式的约束条件以保证结果合法性[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值