假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
分析:把问题拆解缩小化,想一下一二三阶楼梯的话有几种方法,显然一节楼梯有一种方法,而二阶楼梯有一步一步上去和一下走两步上去两种方法到达,那么三阶呢?
显然要想到达三阶楼梯,我们以方面可以从一阶楼梯上去(一阶到三阶这一步跳两格),还可以从二阶楼梯上去,(二阶到三阶走一格)这两种走法的和即为上三阶楼梯总共可以采用的方法数。
那么 三阶楼梯的方法数=上一阶楼梯的方法数+上二阶楼梯的方法数。
由此可以得出状态转移方程 dp[i] = dp[i-1]+dp[i-2].
class Solution {
public int climbStairs(int n) {
if(n == 1) return 1;
if(n==2) return 2;
int dp [] = new int [n+1];
dp[0] = 0;
dp[1] = 1;
dp[2] = 2;
for(int i=3 ;i<n+1;i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
}