##理论部分
应变率张量:
S
i
j
=
1
2
(
∂
u
i
∂
x
j
−
∂
u
j
∂
x
i
)
S_{ij}=\frac{1}2({\frac{\partial{u_i}}{\partial{x_j}}}-{\frac{\partial{u_j}}{\partial{x_i}}})
Sij=21(∂xj∂ui−∂xi∂uj)
涡量:
Ω
i
j
=
1
2
(
∂
u
i
∂
x
j
+
∂
u
j
∂
x
i
)
\Omega_{ij}=\frac{1}2({\frac{\partial{u_i}}{\partial{x_j}}}+{\frac{\partial{u_j}}{\partial{x_i}}})
Ωij=21(∂xj∂ui+∂xi∂uj)
Q
Q
Q 值:
Q
=
1
2
(
∥
Ω
2
∥
−
∥
S
2
∥
)
Q=\frac{1}{2}(\Vert\Omega^2\Vert-\Vert{S^2}\Vert)
Q=21(∥Ω2∥−∥S2∥)
简化到三维笛卡尔坐标下的
Q
Q
Q值如下:
Q
=
−
1
2
(
(
∂
u
∂
x
)
2
+
(
∂
v
∂
y
)
2
+
(
∂
w
∂
z
)
2
)
−
∂
u
∂
y
∂
v
∂
x
−
∂
u
∂
z
∂
w
∂
x
−
∂
v
∂
z
∂
w
∂
y
Q =-\frac{1}2\left(\left (\frac{\partial{u}}{\partial{x}}\right)^2+\left(\frac{\partial{v}}{\partial{y}}\right)^2+\left(\frac{\partial{w}}{\partial{z}}\right)^2\right)-\frac{\partial{u}}{\partial{y}}\frac{\partial{v}}{\partial{x}}-\frac{\partial{u}}{\partial{z}}\frac{\partial{w}}{\partial{x}}- \frac{\partial{v}}{\partial{z}}\frac{\partial{w}}{\partial{y}}
Q=−21((∂x∂u)2+(∂y∂v)2+(∂z∂w)2)−∂y∂u∂x∂v−∂z∂u∂x∂w−∂z∂v∂y∂w
其中
u
u
u,
v
v
v,
w
w
w分别是
x
x
x,
y
y
y,
z
z
z方向上的速度。
##tecplot实现
将tecplot实现代码粘贴如下:
{Q}=-1/2*((ddx({u}))**2+(ddy({v}))**2+(ddz({w}))**2)-ddy({u})*ddx({v})-ddz({u})*ddx({w})-ddz({v})*ddy({w})