题目:http://acm.hdu.edu.cn/showproblem.php?pid=3944
只需两步:1、从杨辉三角推公式,汗一下,高中会这个,但是大学只学了高数没学组合数学,于是呵呵了~~~~不会推导的话,看看这个http://blog.csdn.net/xieshimao/article/details/6699805
2、再谈Lucas定理,看我的另一篇博客吧(随后奉上),
3、对于fac[i][j] 意思是的(j-1)!%p,这个需要预先处理出来,否则果断TLE
我写这个题的时候,还不懂lucas定理,但是想,咱做ACM的,至少会套模板吧,所以用了lucas的模板,然后AC掉了,,以后也是这样吧,如果理解不了算法,至少要会用,直接放弃题目,一点收获也没有啊,至少用模版的时候我自己做的,没参考题解
贴代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#include <cmath>
using namespace std;
#define ll long long
const int MAXN = 10010;
const int N = 1e9+100;
//筛法求素数
bool is[MAXN];int prm[MAXN],pos[MAXN];
ll fac[1250][10001];
int k;
int getprm(int n){
int i,j,k;
for(i=0;i<n;i++) is[i]=true;
is[0]=is[1]=false;
k=0;
for(i=2;i<n;i++){
if(is[i]){
pos[i]=k;
prm[k++]=i;
for(j=i+i;j<n;j+=i)
is[j]=false;
}
}
return k;
}
void Init()
{
int num=getprm(10001);
for(int i=0;i<num;i++)
{
int tt=pos[prm[i]];
fac[tt][0]=fac[tt][1]=1;
for(int j=2;j<prm[i];j++)
fac[tt][j]=fac[tt][j-1]*j%prm[i];
}
}
//快速幂算法
ll pow(ll a, ll b, int p)
{
ll tmp = a % p, ans =1;
while(b)
{
if(b &1) ans = ans * tmp % p;
tmp = tmp*tmp % p;
b >>=1;
}
return ans;
}
ll C(ll n, ll m,int p,int tt)
{
if(m > n) return 0;
return fac[tt][n]*pow(fac[tt][m]*fac[tt][n-m], p-2,p) % p;
}
ll Lucas(ll n, ll m, int p,int tt)
{
if(m ==0) return 1;
else return (C(n%p, m%p,p,tt)*Lucas(n/p, m/p,p,tt))%p;
}
int main()
{
ll n,m,p;
int cnt=0;
Init();
while(~scanf("%I64d%I64d%I64d",&n,&m,&p))
{
if(m>n/2)
m=n-m;//这里不作处理会wa,应该是溢出?
int tt=pos[p];
printf("Case #%d: %I64d\n",++cnt,(Lucas(n+1,m, p,tt)-m+n+p)%p);
}
return 0;
}