hdu 3944 Lucas定理--大组合数取模 多校赛

题目:http://acm.hdu.edu.cn/showproblem.php?pid=3944


只需两步:1、从杨辉三角推公式,汗一下,高中会这个,但是大学只学了高数没学组合数学,于是呵呵了~~~~不会推导的话,看看这个http://blog.csdn.net/xieshimao/article/details/6699805

2、再谈Lucas定理,看我的另一篇博客吧(随后奉上),

3、对于fac[i][j]  意思是的(j-1)!%p,这个需要预先处理出来,否则果断TLE

我写这个题的时候,还不懂lucas定理,但是想,咱做ACM的,至少会套模板吧,所以用了lucas的模板,然后AC掉了,,以后也是这样吧,如果理解不了算法,至少要会用,直接放弃题目,一点收获也没有啊,至少用模版的时候我自己做的,没参考题解


贴代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#include <cmath>

using namespace std;

#define ll long long

const int MAXN = 10010;
const int N = 1e9+100;

//筛法求素数
bool is[MAXN];int prm[MAXN],pos[MAXN];
ll fac[1250][10001];
int k;
int getprm(int n){
    int i,j,k;
    for(i=0;i<n;i++) is[i]=true;
    is[0]=is[1]=false;
    k=0;
    for(i=2;i<n;i++){
        if(is[i]){
            pos[i]=k;
            prm[k++]=i;
            for(j=i+i;j<n;j+=i)
                is[j]=false;
        }
    }
    return k;
}

void Init()
{
    int num=getprm(10001);
    for(int i=0;i<num;i++)
    {
        int tt=pos[prm[i]];
        fac[tt][0]=fac[tt][1]=1;
        for(int j=2;j<prm[i];j++)
            fac[tt][j]=fac[tt][j-1]*j%prm[i];
    }
}

//快速幂算法

ll pow(ll a, ll b, int p)
{
    ll tmp = a % p, ans =1;
    while(b)
    {
        if(b &1)  ans = ans * tmp % p;
        tmp = tmp*tmp % p;
        b >>=1;
    }
    return  ans;
}


ll C(ll n, ll m,int p,int tt)
{
    if(m > n)  return 0;
    return  fac[tt][n]*pow(fac[tt][m]*fac[tt][n-m], p-2,p) % p;
}

ll Lucas(ll n, ll m, int p,int tt)
{
    if(m ==0)  return 1;
    else return  (C(n%p, m%p,p,tt)*Lucas(n/p, m/p,p,tt))%p;
}

int main()
{
    ll n,m,p;
    int cnt=0;
    Init();
    while(~scanf("%I64d%I64d%I64d",&n,&m,&p))
    {
        if(m>n/2)
            m=n-m;//这里不作处理会wa,应该是溢出?
        int tt=pos[p];
        printf("Case #%d: %I64d\n",++cnt,(Lucas(n+1,m, p,tt)-m+n+p)%p);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值