Description
一个字符串的权值是这个串包含的不同字符个数。
给定一个长度为n的字符串,把它分为k个连续非空字段,每个字符必须在某一段中,最小化字符串的权值和。
Input
第一行两个数n,k,含义如题所述。
接下来一行一个长度为n的字符串,保证仅包含小写英文字母。
Output
输出最小权值。
Sample Input
输入1:
12 3
abaacdddfe
输入2:
50 35
acbdcfabcaedscdbcsbacbdcbbacjacbkabcjadkcbsjkckkza
Sample Output
输出1:
6
样例解释1:
一种最优方案是分为:”abaa”, “cddd”和”feff”。
输出2:
39
Data Constraint
对于10%的数据,n<=10。
对于30%的数据,n<=200。
对于50%的数据,n<=1500。
对于另外20%的数据,仅包含a和b两种字母。
对于100%的数据,1<=k<=n<=100,000。
Solution
一个很显然的dp:f[i][j]表示到位置i,分为了j段,需要的最小代价
这有50分
可以发现,答案最大为段数+25
那么代价不会很大,可以放到状态中
状态改成f[i][j]表示分了i段,代价为i+j最右可以到哪里
预处理一个a[i][j]表示从位置i出发,花代价为j,最右可以到哪里
然后随意转移一下
但是,这么做是有bug的(数据里没有,所以这样就可以A了)
如果到某一次,最后剩下的位数已经不够分K段了,前面就不能延伸到最后,这个取个min就行了
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define N 101000
using namespace std;
int n,K,a[N][27],f[N][27],s[N],bz[27],ans;
int main()
{
scanf("%d%d\n",&n,&K);
fo(i,1,n)
{
char c=getchar();
s[i]=c-97;
}
fo(k,1,26)
{
memset(bz,0,sizeof(bz));
int x=0,y=0;
while(y<=k&&x<=n)
{
x++;
bz[s[x]]++;if(bz[s[x]]==1) y++;
}
a[0][k]=x-1;
fo(i,2,n+1)
{
bz[s[i-1]]--;if(bz[s[i-1]]==0) y--;
while(y<=k&&x<=n)
{
x++;
bz[s[x]]++;if(bz[s[x]]==1) y++;
}
a[i-1][k]=x-1;
}
}
memset(f,255,sizeof(f));
f[0][0]=0;
fo(k,0,26)
{
fo(i,0,K-1)
if(f[i][k]>=0)
{
fo(k1,1,26-k) f[i+1][k+k1-1]=min(n-K+i+1,max(f[i+1][k+k1-1],a[f[i][k]][k1]));
}
}
fd(k,26,0) if(f[K][k]==n) ans=k+K;
printf("%d\n",ans);
}