[UOJ#346][清华集训2017]某位歌姬的故事(DP)

博客详细解析了洛谷P4229及UOJ#346问题的解决方案,涉及动态规划(DP)策略。当限制条件的区间端点x不同时,可以离散化并按x从小到大处理,计算每个x的贡献。若x相同,则再次离散化,通过DP状态f[i][j]表示前i段内处理情况,最终复杂度为O(m^2)。
摘要由CSDN通过智能技术生成

Address

Solution

  • orz 讲课现场切掉此题的神仙 Lagoon
  • 可以发现,如果一个限制为 max ⁡ i = l r h i = x \max_{i=l}^rh_i=x maxi=lrhi=x ,另一个限制为 max ⁡ i = a b h i = y \max_{i=a}^bh_i=y maxi=abhi=y y &lt; x y&lt;x y<x
  • 那么对于任意的 k ∈ [ l , r ] ⋂ [ a , b ] k\in[l,r]\bigcap[a,b] k[l,r][a,b] h k h_k hk max ⁡ i = l r h i \max_{i=l}^rh_i maxi=lrhi 没有影响
  • 所以如果每个限制的 x x x 互不相同,我们可以把区间端点离散化之后,按照 x x x 从小到大做
  • 具体地,如果一个限制为 max ⁡ i = l r h i = x \max_{i=l}^rh_i=x maxi=lrhi=x [ l , r ] [l,r] [l,r] 内有 k k k 个位置没有 x x x 严格更小的限制覆盖
  • 那么答案乘上 x k − ( x − 1 ) k x^k-(x-1)^k xk(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值