游戏升级问题的解法_马尔科夫链与随机游动
好久之前写好,因为没网发不上来,着实可笑。^_^
问题背景:
某款游戏升级到下一个段位需要攒够五颗星,赢一局加一星(非连胜状态),输一局掉一星。连胜加两颗星。假设某位玩家赢一局游戏的概率为p(此处假设p=1/2),任意两局之间的战果互不影响。求该玩家增长一个段位所需玩的局数的期望(不考虑掉段的情况)。
分析
这是一个随机过程问题,类似于经典的赌徒输光,但稍微复杂一些。无论目前拥有几颗星,也无论达到目前状态的过程是什么(非输即赢)。下一个动作要么是赢,要么是输,概率分别为p和1-p。如下图所示,当获胜概率为1/2的时候,状态图如下:
其中每个节点代表一个状态,每个有向边的权重代表转移概率。每个节点的出度为2(0,(1,5),(1,6)除外)。点(i,j)中,i代表状态j的到达属性(i=0代表失败所得,i=1代表获胜所得)。j代表目前所拥有的星数。
0既是初始点,也是状态(x,1)的指向点,所以在这里记作0。
将状态集合{0,(0,1),(1,1),(0,2),(1,2),(0,3),(1,3),(1,4),(1,5),(1,6)}分别记作状态{0,1,2,3,4,5,6,7,8,9}。