tensorflow GPU小测试

tensorflow GPU小测试

2019.01.18补充:这个例子不具有代表性,涉及到卷积运算的时候,GPU的加速效果会体现得比较明显。

简单测试了一下tensorflow的GPU计算和CPU计算的区别。这里的计算例子只非常简单的小规模矩阵相乘,但是也体现出了CPU和GPU算力的差距,代码及结果如下:

import tensorflow as tf
import datetime
#running
# Creates a graph.(cpu version)
print('cpu version')
starttime1 = datetime.datetime.now()
with tf.device('/gpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[6, 9], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,1
### 使用 TensorFlow 进行 GPU 测试 为了确认 TensorFlow 是否能够正常利用 GPU 加速计,可以按照如下方法进行验证: #### 验证 TensorFlow 版本 确保安装的是支持 GPUTensorFlow 版本。可以通过 Python 脚本来打印当前已安装的 TensorFlow 版本号[^1]。 ```python import tensorflow as tf print(tf.__version__) ``` 此命令会显示所使用的 TensorFlow 库的具体版本信息。 #### 检查 GPU 可用性 通过调用 `tf.config.list_physical_devices('GPU')` 函数来查询系统中可用的 GPU 设备列表。如果返回非空数组,则表示 TensorFlow 成功识别到了至少一块 NVIDIA 显卡并准备就绪用于加速运[^3]。 ```python physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: print(f"Detected GPUs: {len(physical_devices)}") else: print("No GPU detected.") ``` 这段代码将会输出检测到的 GPU 数量;如果没有发现任何 GPU 或者无法加载相应的驱动程序,则提示未找到 GPU。 #### 执行简单的张量操作以测试性能差异 创建两个随机矩阵并在 CPU 和 GPU 上分别执行乘法运,比较两者所需时间的不同之处。这有助于直观感受 GPU 带来的速度提升效果。 ```python import time def matrix_multiplication(device_name='/CPU:0'): with tf.device(device_name): A = tf.random.uniform([1000, 1000]) B = tf.random.uniform([1000, 1000]) start_time = time.time() C = tf.matmul(A, B) end_time = time.time() return (end_time - start_time) cpu_time = matrix_multiplication('/CPU:0') gpu_time = matrix_multiplication('/GPU:0') print(f'CPU Time: {cpu_time:.4f} seconds.') print(f'GPU Time: {gpu_time:.4f} seconds.') ``` 上述脚本定义了一个函数 `matrix_multiplication()` 来测量不同设备上完成相同任务的时间消耗,并最终对比两者的效率差距。 #### 安装兼容的 TensorFlow-GPU 包 对于希望启用 GPU 支持的应用场景来说,建议预先安装好匹配的操作系统平台以及硬件环境下的特定版本 `tensorflow-gpu` 。例如,在 Windows 平台上可采用清华镜像源快速获取官方发布的二进制文件[^2]: ```bash pip install tensorflow_gpu==1.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 注意这里指定的是较旧的历史版本(v1.2.0),实际应用时应根据个人需求选择最新稳定版或其他适用版本。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值