【nvidia】3.cuda及cudnn安装


在系统 显卡安装完成以及 旧版本卸载后,初装cuda toolkit。

第一步:检测显卡的计算能力以及匹配的cuda版本

可以从wiki官网来查:

图一 cuda版本及需要的显卡计算能力
图二各种显卡以及其计算能力
图三nvidia官网各显卡计算能力
我的显卡是Geforce gtx 745没有找到,参照750计算能力是5.0。有些不确定,依据计算能力来选cuda版本不可确定。所以可以依据显卡驱动来选cuda版本。

第二步:检查显卡驱动版本以及可适配的cuda版本

官网有cuda与驱动版本的对应关系:
图四cuda版本及最低显卡驱动要求

nvidia-smi#查看本机显卡驱动

在这里插入图片描述
图中有cuda version,但是cuda 并没有安装。当前显卡驱动430.26,cuda8~10都可以安装。我们安装cuda 10。

第三步:安装CUDA 10

打开官网下载地址
在这里插入图片描述
我们将下载cuda 10.1:在这里插入图片描述
选择如图所示选项并下载。
下载完成后:
在这里插入图片描述
接着安装:

sudo dpkg -i cuda-repo-ubuntu1604-10-1-local-10.1.105-418.39_1.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-10-1-local-10.1.105-418.39/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda
sudo reboot

在这里插入图片描述在这里插入图片描述
安装成功。
在这里插入图片描述
额,版本怎么发生变化了,但是没关系,正常来说显卡驱动的安装有官方版和公版,公版都是linux系统自动搜索安装的。

第四步:设置cuda的 路径变量

如果只修改当前用户,在~/.bashrc添加以下代码就可以;如果要为机器上所有用户使用,那么修改/etc/profile

vi ~/.bashrc
export CUDA_HOME=/usr/local/cuda
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}:${CUDA_HOME}/extras/CUPTI/lib64
export CUDA_ROOT=/usr/local/cuda  #安装pycuda需要
export CUDA_INC_DIR=${CUDA_HOME}/include
export CPATH=${CUDA_HOME}/include:${CPATH}
export PATH=${CUDA_HOME}/bin:${PATH}
source ~/.bashrc
nvcc --version #查看版本

在这里插入图片描述

第五步:运行CUDA example,验证安装是否正确

sudo apt-get install -y build-essential
cd /usr/local/cuda/bin
sh cuda-install-samples-10.1.sh  ~ #sh cuda-install-samples-xx.x.sh ~ 要对应自己的版本
cd ~/NVIDIA_CUDA-10.1_Samples 
make -j4
cd 1_Utilities/bandwidthTest
./bandwidthTest

在这里插入图片描述

第六步:下载并安装CuDNN

官网下载
在这里插入图片描述
找到适合cuda版本的CuDNN,要知道这里的cuda版本的是用命令nvcc -v获得并非nvidia-smi查看时获得的版本,这个要注意:
在这里插入图片描述
找到适合系经版本的CuDNN:
在这里插入图片描述
点击下载。下载完成后的文件后缀是solitairetheme8,改成tgz即可
2020年8月3日更新,近期安装cudnn,发现界面不太一样,进行说明:
在这里插入图片描述
可以看到,有多个选项,我们先windows,linux,ubuntu的选项,下边还有多个选项,x86_64架构是用来给常规的电脑用,ppc架构是给苹果电脑用的,下边三个是deb包安装,runtime支持深度学习框架运行,如果要编译深度学习框架还需要安装装developer包。所以总结来说是要安装x86_64.官方的安装方法请参照安装方法如下:

#解压至cuda文件夹
tar -xzf cudnn-10.1-linux-x64-v7.6.2.24.tgz
cd cuda
sudo cp ./lib64/libcudnn* /usr/local/cuda-10.1/lib64
sudo cp ./include/cudnn.h /usr/local/cuda-10.1/include
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

#以上部分完装完成
cat /usr/local/cuda/include/cudnn.h |grep CUDNN_MAJOR -A 2#查看cudnn版本

在这里插入图片描述
版本7.6.2
补充一下,有些时候,默认安装好cuDNN要查看cudnn版本时,cudnn.h的路径是/usr/include,验证cudnn的安装可以:

whereis cudnn.h

然后根据获得结果进行版本查询,注意cudnn8以后无法用cudnn7的方法来查看版本。
下图是cudnn7的结果
在这里插入图片描述
查看版本可以执行如下命令:

cd /usr
find ./ -name libcudnn*

下图是cuDNN7
cuDNN7
下图是cuDNN8
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值