【nvidia】2.cuda旧版本卸载

简单方法:

直接删除cuda文件:/usr/local/cuda-?.0,问号代表版本号

高级方法:

#方法一:
sudo apt-get remove nvidia-cuda-toolkit
#方法二:删除cuda toolkit及依赖
sudo apt-get remove --auto-remove nvidia-cuda-toolkit
#方法三:
sudo apt-get purge nvidia-cuda-toolkit # 或者
sudo apt-get purge --auto-remove nvidia-cuda-toolkit
#方法四:将会完整删除
cd /usr/local/cuda-?.0/bin
sudo sudo ./uninstall_cuda_?.0.pl

还要执行:

dpkg -l |grep cuda-#找到所有用dpkg安装过的cuda
#dpkg -l | grep cuda- | awk '{print $2}' 这个指令也试试
dpkg -l | grep cuda- | awk '{print $2}' | xargs -n1 sudo dpkg --purge

在这里插入图片描述
另外,如果有/opt/cuda 和~/NVIDIA_GPU_Computing_SDK的文件,要删除。同时要删除export PATH= P A T H : / o p t / c u d a / b i n ∗ 和 ∗ L D L I B R A R Y P A T H = PATH:/opt/cuda/bin* 和* LD_LIBRARY_PATH= PATH:/opt/cuda/binLDLIBRARYPATH=LD_LIBRARY_PATH:/opt/cuda/lib:/opt/cuda/lib64 在~/.bashrc 或/etc/profile /ect/bash.bashrc。
想要知道系统中安装的cuda版本,可以使用:

nvcc --version

卸载完旧版本,就需要安装新的版本。安装流程参见下一篇博客。

### CUDA 12.4 安装指南 为了安装 CUDA 12.4,需遵循以下方法来确保兼容性和稳定性: #### 查看硬件环境 在安装之前,确认系统的显卡型号和支持情况至关重要。可以运行以下命令获取显卡信息: ```bash lspci | grep -i nvidia ``` 接着验证当前 NVIDIA 驱动版本是否满足最低要求(通常需要较新的驱动支持 CUDA)。通过如下命令查询驱动版本: ```bash nvidia-smi ``` 如果未显示任何结果,则可能尚未正确安装 NVIDIA 显卡驱动[^2]。 #### 下载并安装最新驱动 访问[NVIDIA官方驱动页面](https://www.nvidia.com/Download/index.aspx),选择适合的操作系统和显卡型号下载最新的推荐稳定版驱动程序。完成安装后重启计算机以应用更改。 对于某些特定场景下需要回滚到先前版本或彻底清除现有驱动时,请按照引用说明操作先移除已有组件再继续后续步骤。 #### 获取CUDA工具包 前往[CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive), 找到对应目标平台下的CUDA 12.4发行版链接进行本地保存。注意挑选与主机操作系统架构相匹配的文件形式(.deb,.run等). 执行安装脚本前建议阅读其附带文档了解依赖关系解决办法以及其他注意事项: ```bash sudo dpkg -i cuda-repo-<distro>_<version>_amd64.deb sudo apt-get update sudo apt-get install -y cuda ``` 设置必要的环境变量以便于编译器识别路径位置: ```bash echo 'export PATH=/usr/local/cuda-12.4/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.4/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` 最后可以通过简单的测试样例验证整个流程无误: ```c #include <stdio.h> __global__ void helloFromGPU() { printf("Hello World from GPU!\n"); } int main() { printf("Hello World from CPU\n"); helloFromGPU<<<1, 10>>>(); cudaDeviceSynchronize(); } ``` 编译上述代码片段并通过`nvcc`调用生成可执行二进制文件之后观察输出行为即可判断成功与否。 --- ### 卸载旧版 CUDA 方法 当计划升级至更高版本如这里提到的CUDA 12.4之前往往有必要清理掉之前的残留数据防止发生冲突现象影响正常使用体验效果不佳等问题出现. 利用APT管理软件包的方式轻松实现这一目的: ```bash sudo apt-get --purge remove "*cublas*" "cuda*" sudo apt autoremove && sudo apt autoclean rm -rf /usr/local/cuda* ``` 另外还需手动检查是否存在其他自定义配置项比如`.bashrc`, 删除不再适用的相关部分设定内容恢复初始状态准备迎接全新一轮部署工作开展起来更加顺畅高效. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值