Enhanced object detection via fusion with prior beleefs from image classification

Enhanced object detection via fusion with prior beleefs from image classification

通过融合图像分类与先验 beleefs来提高目标检测性能

Yilun Cao∗y, Hyungtae Lee∗zx, and Heesung Kwonx
yUniversity of Southern California, Los Angeles, California, U.S.A.
zBooz Allen Hamilton Inc., McLean, Virginia, U.S.A.
xU.S. Army Research Laboratory, Adelphi, Maryland, U.S.A.
yiluncao@usc.edu, lee hyungtae@bah.com, heesung.kwon.civ@mail.mil


ABSTRACT
文中引入一种新的融合方法以提高目标检测性能,融合两不同类型的计算机视觉任务进行决策:对象检测和图像分类。在提议的工作中,从图像分类得到的类标签被视为某些似有似无对象的先验知识。先验知识进行物体检测的决策融合,通过物体检测器与先验知识的矛盾减少误报的,提高检测精度。最近推出的新的融合方法称为动态意见融合(DBF),用于融合检测器输出和分类先验。实验结果表明,通过提供的融合框架,过去工作中使用的基准数据集上的所有检测算法的检测性能均有所提高。

Index Terms— dynamic belief fusion, object detection, image classification

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值