Opencl工作流程和简单示例

参考:OpenCL 教程:从基础到实践-CSDN博客文章浏览阅读5.3k次,点赞29次,收藏64次。OpenCL(Open Computing Language)是一个开放标准的并行编程框架,用于在异构系统上编写高性能计算程序。它允许开发者利用各种计算设备(如 CPU、GPU、FPGA 等)来加速计算密集型任务。通过本教程,我们已经深入探讨了 OpenCL 的核心概念、编程模型、内存模型和执行模型。我们还通过实际的例子展示了如何实现和优化 OpenCL 程序。记住,优化是一个迭代的过程。始终使用性能分析工具来测量你的优化效果,并根据具体的硬件和问题特性来调整你的策略。_openclhttps://blog.csdn.net/jiayoushijie/article/details/139899498

OpenCL 基础概念

  • 平台 (Platform): OpenCL 实现的顶层容器,通常对应于一个 OpenCL 的实现厂商。
  • 设备 (Device): 执行 OpenCL 代码的硬件单元,如 CPU、GPU 或加速器。
  • 上下文 (Context): 管理设备和相关资源的环境。一个上下文可以包含多个设备。
  • 命令队列 (Command Queue): 向设备发送命令的队列。每个命令队列与一个特定的设备相关联。
  • 程序 (Program): OpenCL C 代码及其编译后的二进制。它包含一个或多个内核。
  • 内核 (Kernel): 在设备上执行的函数。这是 OpenCL 程序的核心部分。
  • 工作项 (Work-item): 内核执行的一个实例,类似于一个线程。
  • 工作组 (Work-group): 工作项的集合。同一工作组中的工作项可以共享局部内存和同步。

OpenCL 程序的基本结构

一个典型的 OpenCL 程序包括以下步骤:

  1. 获取平台和设备信息
  2. 创建上下文
  3. 创建命令队列
  4. 创建和构建程序
  5. 创建内核
  6. 创建内存对象
  7. 设置内核参数
  8. 执行内核
  9. 读取结果
  10. 清理资源

使用vcpkg安装opencl

vcpkg install opencl:x64-windows

C++代码

#include <CL/opencl.hpp>
#include <opencv2/opencv.hpp>
#include <iostream>
#include <fstream>
#include <vector>

// 读取OpenCL内核源代码
std::string readKernelSource(const char* filename) {
    std::ifstream file(filename);
    return std::string(std::istreambuf_iterator<char>(file),
        std::istreambuf_iterator<char>());
}

int main(int argc, char** argv) {
    // 读取图像
    cv::Mat image = cv::imread("C:\\Users\\Pictures\\7.jpg", cv::IMREAD_GRAYSCALE);//图片大小:6144*8192
    if (image.empty()) {
        std::cerr << "Error: Could not read image." << std::endl;
        return -1;
    }

    // 获取OpenCL平台
    std::vector<cl::Platform> platforms;
    cl::Platform::get(&platforms);
    if (platforms.empty()) {
        std::cerr << "No OpenCL platforms found." << std::endl;
        return -1;
    }

    // 选择第一个平台
    cl::Platform platform = platforms[0];

    // 获取GPU设备
    std::vector<cl::Device> devices;
    platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
    if (devices.empty()) {
        std::cerr << "No OpenCL devices found." << std::endl;
        return -1;
    }

    // 选择第一个设备
    cl::Device device = devices[0];

    // 创建上下文和命令队列
    cl::Context context(device);
    cl::CommandQueue queue(context, device);

    // 读取并编译OpenCL程序
    std::string kernelSource = readKernelSource("F:\\WORK\\demo\\opgncl-test\\opgncl-test\\edge_detection.cl");
    cl::Program program(context, kernelSource);
    if (program.build({ device }) != CL_SUCCESS) {
        std::cerr << "Error building: " << program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device) << std::endl;
        return -1;
    }

    // 创建内核
    cl::Kernel kernel(program, "sobel_edge_detection");

    // 创建输入和输出缓冲区
    cl::Buffer inputBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
        image.total() * sizeof(uchar), image.data);
    cl::Buffer outputBuffer(context, CL_MEM_WRITE_ONLY,
        image.total() * sizeof(uchar));

    auto t = clock();

    // 设置内核参数
    kernel.setArg(0, inputBuffer);
    kernel.setArg(1, outputBuffer);
    kernel.setArg(2, image.cols);
    kernel.setArg(3, image.rows);

    // 执行内核(工作组 工作项)
    cl::NDRange global(image.cols, image.rows);
    queue.enqueueNDRangeKernel(kernel, cl::NullRange, global, cl::NullRange);

    std::cout << "time1 : " << clock() - t << std::endl;//0ms

    // 读取结果
    t = clock();
    cv::Mat result(image.size(), CV_8UC1);
    queue.enqueueReadBuffer(outputBuffer, CL_TRUE, 0,
        image.total() * sizeof(uchar), result.data);

    std::cout << "time2 : " << clock() - t << std::endl;//30ms


    t = clock();
    cv::Mat  dst;
    cv::Canny(image, dst, 100, 200);
    std::cout << "time3 : " << clock() - t << std::endl;//65ms

    // 显示原图和结果
    cv::imshow("Original Image", image);
    cv::imshow("Edge Detection Result", result);
    cv::imshow("cv::Canny", dst);
    cv::waitKey(0);

    return 0;
}

核函数

__kernel void sobel_edge_detection(__global const uchar* input,
                                   __global uchar* output,
                                   int width,
                                   int height)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (x < width && y < height) {
        int idx = y * width + x;

        // 如果是边界像素,直接设置为0
        if (x == 0 || x == width - 1 || y == 0 || y == height - 1) {
            output[idx] = 0;
            return;
        }

        // 定义Sobel算子
        int Gx[3][3] = {{-1, 0, 1},
                        {-2, 0, 2},
                        {-1, 0, 1}};

        int Gy[3][3] = {{-1, -2, -1},
                        { 0,  0,  0},
                        { 1,  2,  1}};

        int sum_x = 0, sum_y = 0;

        // 应用Sobel算子
        for (int i = -1; i <= 1; i++) {
            for (int j = -1; j <= 1; j++) {
                int pixel = input[(y + i) * width + (x + j)];
                sum_x += pixel * Gx[i+1][j+1];
                sum_y += pixel * Gy[i+1][j+1];
            }
        }

        // 计算梯度幅值
        int sum = abs(sum_x) + abs(sum_y);
        //output[idx] = (sum > 255) ? 255 : sum;
		output[idx] = (sum > 200) ? 255 : 0;
    }
}

实验结果:

原图

opencl

opencv

调试信息:

time1 : 0
time2 : 30
time3 : 65

时间:

openclopencv
0ms65ms

可以看出,对6144*8192的图片执行查找边缘,GPU执行速度很快,不到1ms;CPU执行要65ms,当然从显卡读取数据要30ms,如果不算数据拷贝的时间,opencv大概是35ms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值