Python_DataFrame_concat

本文探讨了Python中DataFrame的合并与连接操作,重点介绍了`concat`方法,该方法可实现沿着特定轴合并数据,并且可以进行全连接或者内连接。`pd.concat()`能够按行或列拼接DataFrame,通过`drop_duplicates`可以实现数据去重。
摘要由CSDN通过智能技术生成

DataFrame数据的合并、连接(concat、merge、join)

一、concat:沿着一条轴,将多个对象合并到一起 concat方法相当于数据库中的全连接 union all,它可以指定联接的方式( out join 或 inner join),还可以指定按照某个轴进行连接, 与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果。

pd.concat()只是单纯的把两个表拼接在一起,参数axis是关键,用于指定是行还是列。

import pandas as pd
import numpy as np
df1 = pd.DataFrame({'水果':['苹果','梨','草莓'],'数量':[4,5,6]},index=[1,2,3])
df1
 水果数量
1苹果4
25
3草莓6
df2=pd.DataFrame({'水果':['苹果','梨','草莓','葡萄'],'价格':[10.2,23.4,33.56,9.9]},index=[1,2,3,4])
df2
 水果价格
1苹果10.20
223.40
3草莓33.56
4葡萄9.90
# axis 连接的轴向, 0,表格向下, 1 ,表格向右
pd.concat([df1,df2],axis=1)     
pd.concat([df1,df2],axis=0) 
 价格数量水果
1NaN4.0苹果
2NaN5.0
3NaN6.0草莓
110.20NaN苹果
223.40NaN
333.56NaN草莓
49.90NaN葡萄
# ignore_index=True 重建索引
pd.concat([df1,df2],axis=0,ignore_index=True)   
 价格数量水果
0NaN4.0苹果
1NaN5.0
2NaN6.0草莓
310.20NaN苹果
423.40NaN
533.56NaN草莓
69.90NaN葡萄
# 内连接
pd.concat([df1,df2],axis=1,join='inner',keys='水果')   
 水果数量水果价格
1苹果4苹果10.20
2523.40
3草莓6草莓33.56
# 外连接
pd.concat([df1,df2],axis=1,join='outer',keys='水果')
 水果数量水果价格
1苹果4.0苹果10.20
25.023.40
3草莓6.0草莓33.56
4NaNNaN葡萄9.90

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值