Tiny ImageNet数据集预处理

本文介绍了Tiny ImageNet数据集的预处理步骤,包括导入Python模块,处理TXT文件,划分训练集和验证集,以及如何准备数据并定义DataLoader进行深度学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tiny Imagenet是斯坦福大学提供的图像分类数据集,其中包含200个类别,每个类别包含500张训练图像,50张验证图像及50张测试图像,数据集地址:Tiny ImageNet

导入所需模块

import os
import sys
from torch.utils.data import Dataset, DataLoader
import numpy as np
import cv2
from torchvision import transforms

处理TXT文件

训练集

labels_t = []
image_names = []
with open('.\\tiny-imagenet-200\\wnids.txt') as wnid:
    for line in wnid:
        labels_t.append(line.strip('\n'))
for label in labels_t:
    txt_path = '.\\tiny-imagenet-200\\train\\'+label+'\\'+label+'_boxes.txt'
    image_name = []
    with open(txt_path) as txt:
        for line in txt:
            image_name.append(line.strip('\n').split('\t')[0])
    image_names.append(image_name
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值