Tiny Imagenet是斯坦福大学提供的图像分类数据集,其中包含200个类别,每个类别包含500张训练图像,50张验证图像及50张测试图像,数据集地址:Tiny ImageNet
导入所需模块
import os
import sys
from torch.utils.data import Dataset, DataLoader
import numpy as np
import cv2
from torchvision import transforms
处理TXT文件
训练集
labels_t = []
image_names = []
with open('.\\tiny-imagenet-200\\wnids.txt') as wnid:
for line in wnid:
labels_t.append(line.strip('\n'))
for label in labels_t:
txt_path = '.\\tiny-imagenet-200\\train\\'+label+'\\'+label+'_boxes.txt'
image_name = []
with open(txt_path) as txt:
for line in txt:
image_name.append(line.strip('\n').split('\t')[0])
image_names.append(image_name