pytorch 加载自己的数据集

pytorch 加载自己的数据集

pytorch 加载自己的数据集,需要写一个继承自torch.utils.data中Dataset类,并修改其中的__init__方法、__getitem__方法、__len__方法。默认加载的都是图片,__init__的目的是得到一个包含数据和标签的list,每个元素能找到图片位置和其对应标签。然后用__getitem__方法得到每个元素的图像像素矩阵和标签,返回img和label。

以加载一个图像放在某个文件夹下,并在当前目录下生成了一个.txt的文件,大致如下train、test文件夹下放图片,test.txt和train.txt以如下方式存放图片路径和标签:
在这里插入图片描述

import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image

root = "/home/zlab/zhangshun/torch1/data_et/"


# -----------------ready the dataset--------------------------
def default_loader(path):
    return Image.open(path).convert('RGB')
    
class MyDataset (Dataset):
    # 构造函数带有默认参数
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
        fh = open(txt, 'r')
        imgs = []
        for line in fh:
            # 移除字符串首尾的换行符
            # 删除末尾空
            # 以空格为分隔符 将字符串分成
            line = line.strip('\n')
            line = line.rstrip()
            words = line.split()
            imgs.append((words[0], int(words[1])))#imgs中包含有图像路径和标签
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        fn, label = self.imgs[index]
        #调用定义的loader方法
        img = self.loader(fn)
        if self.transform is not None:
            img = self.transform(img)
        return img, label

    def __len__(self):
        return len(self.imgs)


train_data = MyDataset(txt=root + 'train.txt', transform=transforms.ToTensor())
test_data = MyDataset(txt=root + 'test.txt', transform=transforms.ToTensor())

#train_data 和test_data包含多有的训练与测试数据,调用DataLoader批量加载
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值