深度学习语言模型(1)-word2vec的发展历程

详细参考:https://blog.csdn.net/itplus/article/details/37969519,讲得比较细
目录:
深度学习语言模型(1)-word2vec的发展历程
深度学习语言模型(2)-词向量,神经概率网络模型(keras版本)
深度学习语言模型(3)-word2vec负采样(Negative Sampling) 模型(keras版本)

一.概率语言模型
比方有下面一句话:
“我今天打篮球”
经过分词以后有:我,今天,打,篮球
那么对于这样的一个句子,出现概率P(S)可以表示为:
P(S) = P(我)*P(今天|我)*P(打|我,今天)*P(篮球|我,今天,打)
也就是说每个词都依赖于前面的词。
这样就会有一个问题:
1.当一个常的句子出现,都依赖于前面那么多词,导致计算量过大
2.因为词和词之间都有多种可能组成方式,导致数据过于稀疏
3.数据过于稀疏,也导致了参数过多

回想一下,如果一个很长的句子,那么第1000个词会依赖于第一个词吗?这种可能性很小啊,所以这里提出了使用
N_gram,也就是说当前的词只依赖于前面N-1个词。比如这里为N=2,则只依赖于前面一个词
则"我今天打篮球"经过分词2_gram就变成:
P(S) = P(我)P(今天|我)*P(打|今天)*P(篮球|打),这样是不是好很多,也就是说如果N变大,那么参数模型的数量和计算量跟着更大。

虽然有了N_Gram能稍微解决了参数和计算量过大问题,但还是存在很多的缺陷。再回过头来看一下语言模型,语言模型的本质其实就是词的组成,词的编码可以使用one-hot,但是one-hot存在很多缺陷:
1.有多少词就有多少编号,导致数据过于稀疏
2.词和词之间没有什么联系
为了解决one-hot的问题,怎么把一个词转换成更有意义的向量,就有了词向量这个概念。

二.词向量
(1)词向量就是说使用一个固定的维度的向量,去表示所有的词,如下图就是使用一个2维的向量去表示,会发现属性相近,意思相近的词会会靠得更近,它们的距离也就越短。
这里写图片描述
不同的语言,经过训练的词向量,也会发现它们的分布也会变得很像,左边为英语,右边为西班牙语:
这里写图片描述
(2)那么词向量是如何得来的呢?其实是对一个语言模型训练后得到的。那么一个语言模型一般分两种情况:
1.CBOW(continuous Bag-of-Words Model),根据上下文,预测当前词语出现概率的模型)
2.Skip-gram,根据当前词预测上下文
CBOW和Skip-gram刚好相反
(3)那么一个语言模型的训练数据是如何定义的?
1.CBOW
输入的上下文,即w(t-2),w(t-1),w(t+1)w(t+2),然后经过神经网络,输出当前值,即w(t)
训练的时候是,要根据windows的滑动窗口的值,比如说windows_size=2(即左边两个,右边两个)
比如有句子:“我今天打篮球”,则有
输入x=[0,0,今天,打],label=我;0表示填充,然后继续滑动
输入x=[0,我,打,篮球],label=今天;然后继续滑动

输入x=[今天,打,0,0],label=篮球;
2.Skip-gram
和CBOW相反

三.词向量的训练3种方式(都采用CBOW的数据):
1.神经概率网络模型(2003年),步骤如下:
(1)输入层,将每一个词都使用随机的100维向量表示
(2)投影层,将一个上下文的词拼接起来,比如滑动窗口是3,则有(batch_size,6,100)
(3)隐藏层,就是一个全连接层,比如(100,1024)
(4)输出层,使用softmax分类器,类别就是所有词的id,比如现在有50000个词,则,输出层(1024,50000)
在反向传播过程中,不仅更新输出层,隐藏层的权重,还要更新投影层中的x,即词相对应的100维向量。
优点:
(1)即使两个句子出现的次数由很大悬殊,但相似的句子会几乎被同等对待,比如"我今天打篮球"和"我今天打羽毛球"。但还是由点差别,差别来自于两句子中的篮球和羽毛球出现不等,因为在训练过程中训练篮球时,羽毛球的label=0,在训练羽毛球时,篮球的label=0,所以会收到次数的影响,如果不想受到次数的影响,则可以采用将在训练篮球的时候,羽毛球的label=1,训练羽毛球的时候,篮球的label=1。或者采用下述的两种训练方式,在训练充足的情况下差距会变小。
缺点:
(1)如果词的量过大,后面的输出层权重参数过多,导致内存不足

2.word2vec(Hierarchical Softmax)模型
(1)输入层,将每一个词都使用随机的100维向量表示
(2)投影层,将一个上下文的词拼接起来,比如滑动窗口是3,则有(batch_size,6,100),然后累加,变成(batch_size,100)
(3)Hierarchical Softmax层,即分层思想,即采用多次二分类来代替多分类(其实这个在SVM多分类中也有用)。这里的分类器根据词语的词频构造Huffman树,经常出现的词语
路径就越短,编码也就越短,比如下图中的"足球",编码为1001,也就是说它只需要进行4次2分类,然后概率累乘,利用交叉熵求向上梯度,然后树的每个判断节点都相当于输出层,所以每个节点(100,2)个参数。
之前在投影层的时候是将词向量都相加了,那么在反向传播的时候是将每个词向量都+上投影层累加后词向量w的梯度。
优点:
(1)相对于神经概率网络模型来说,没有隐藏层
(2)相对于神经概率网络模型来说,输出层只计算和更新相对应的词的权重参数,而不是更新整个输出层,比如上述"足球",只用计算和训练
1001节点的权重参数,也就4*(100,2)个权重参数
缺点:
(1)如果词语的数量过于庞大,还是存在计算复杂度很高的问题
3.word2vec (Negative Sampling)模型,是对Hierarchical Softmax的改善
(1)输入层,将每一个词都使用随机的100维向量表示
(2)投影层,将一个上下文的词拼接起来,比如滑动窗口是3,则有(batch_size,6,100),然后累加,变成(batch_size,100)
(3)输出层,还是采用二分类的思想,就是说当前词为正例,不是当前词的全部为反例,那么负样本的构成为从所有词语中随机获取(也不是随机,还是依据词频随机),然后输出层
的大小依旧是(100,50000),但是重要重要的是,在计算和训练的时候,只会使用需要计算和训练出现的词,因为50000个神经元都对应的是一个词的概率。所以这边只会抽出正例词
和负例词相应的神经元进行训练,比如1个正例+16个负例,则输出层只会拿(100,17)进行2分类训练。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值