pytorch中loss_functions—ctcloss

本文介绍了PyTorch中的CTC损失函数,包括其函数形式、参数解析以及使用示例。CTC Loss用于序列到序列的学习任务,适用于如语音识别等场景。参数包括log_probs、targets、input_lengths和target_lengths等,需要对log_probs进行对数处理。
摘要由CSDN通过智能技术生成

pytorch中loss_functions—ctcloss

首先来看下ctc_loss的函数形式:

torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean', zero_infinity=False)

参数

  • log_probs –(T,N,C)其中C是码表中的字符个数,包括blank。T表示序列的长度,N表示batch size该参数需要先进行取自然对数处理,通过torch.nn.functional.log_softmax()
  • targets<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值