偏差,均方根误差RMSE

目录

一、均方误差MSE​编辑

 二、R自定义函数

 三、均方根误差(RMSE), 平均绝对误差(MAE), 标准差(Standard Deviation)的对比

参考:


一、均方误差MSE

 这里使用trace是因为多元情形下方差是矩阵。

 二、R自定义函数

来自:2022 - Biometrical Journal - Wiley Online Library

bias.fct <- function(est, true.beta) {
  round((mean(est) - true.beta), digits = 3) 
}


sd.fct <- function(est) {
  round(sd(est), digits = 3)
}

rmse.fct <- function(est, true.beta) {
  round(sqrt((mean(est) - true.beta) ^ 2 + var(est)), digits = 3)
}

 三、均方根误差(RMSE), 平均绝对误差(MAE), 标准差(Standard Deviation)的对比

(1)RMSE: Root Mean Square Error,均方根误差
是观测值与真值偏差的平方和与观测次数m比值的平方根。
是用来衡量观测值同真值之间的偏差
(2)MAE: Mean Absolute Error ,平均绝对误差
是绝对误差的平均值
能更好地反映预测值误差的实际情况.

(3)SD: Standard Deviation ,标准差
是方差的算数平方根
是用来衡量一组数自身的离散程度

RMSE与标准差对比:标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。

RMSE与MAE对比:RMSE相当于L2范数,MAE相当于L1范数。次数越高,计算结果就越与较大的值有关,而忽略较小的值,所以这就是为什么RMSE针对异常值更敏感的原因(即有一个预测值与真实值相差很大,那么RMSE就会很大)。

参考:

2022 - Biometrical Journal - Wiley Online Library  (上述R自定义函数由该文章提供)

参数估计的均方误差(MSE),偏置(Bias)与方差(Variance)分解,无偏估计_mse随正则化参数变化的曲线-CSDN博客

均方根误差RMSE(Root Mean Square Error)-CSDN博客

均方根误差(RMSE),平均绝对误差(MAE),标准差(Standard Deviation)的对比-CSDN博客

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值