目标检测基本框架

前言:学长讲的目标检测入门,我就随手记了个大框架,感觉深度学习迭代太快,具体模型特点还是各自看论文吧~
本文可能存在拼写/部分错误,重点是框架啊哈哈哈。 另,欢迎指正!

目标检测框架组成

Backbone

  • 提取:目标独有(黑盒子)的特征
  • 特征提取器:VGG,ResNet

Head

  • 识别/分割/掩码-马赛克等具体任务

Neck

  • FPN结构(2016)
  • ASFF
  • RFB
  • SPP

提升检测效率

目的:提取有效特征

全卷积FCN

全连接转化为1*1的全卷积

  • 优点:可以接受任意大小的输入图像,更加高效
  • 缺点:得到结果不够精细,缺乏空间一致性

多特征检测—不同尺度的特征图相加SSD

2016 Single Shot MultiBox–SSD

多尺度融合—特征金字塔FPN

同Neck部分

注意力机制

目的:更快get目标

  • 自上而下——主动——聚焦式注意力【normal】
  • 自下而上——被动——显著性注意力
  • 例如:SENet(2018),SKNet(2019),CBAM

目标检测的评价参数

  • TP—IoU>0.5的检测框数量
    True Positive (TP): (同一Ground Truth只计算一次)
  • FP—IoU<=0.5的检测框数量
    False Positive (FP): 检测到同一个GT的多余检测框的数量
  • FN—没有检测到的GT数量
  • TN—不会使用到mAP中

Acc

所有样本
A c c = T P + T N T P + T N + F P + F N Acc=\frac{TP+TN}{TP+TN+FP+FN} Acc=TP+TN+FP+FNTP+TN

Precision—查准率

所有正样本(检测出来的)
P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP

Recall—查全率

所有正确识别的概率
P r e c i s i o n = T P T P + F N Precision=\frac{TP}{TP+FN} Precision=TP+FNTP

AP—PR曲线下面积

A P = ∑ P r ∑ r AP=\frac{\sum P_r}{\sum r} AP=rPr

mAP—mean Average Precision

m A P = A P t o t a l c l a s s mAP=\frac{AP}{total_{class}} mAP=totalclassAP

IoU

交并比(IOU)是度量两个检测框(对于目标检测来说)的交叠程度。
I o U = a r e a ( B p ∩ B g t ) a r e a ( B p ∪ B g t ) B g t 目 标 实 际 的 边 框 ; B p 预 测 的 边 框 IoU=\frac{area(B_p\cap B_{gt})}{area(B_p\cup B_{gt})} \\B_{gt}目标实际的边框;B_p预测的边框 IoU=area(BpBgt)area(BpBgt)BgtBp

目标检测的平台

  • detection2
    • pytorch
  • MMdetection
    • pytorch
    • 港中文-商汤
    • github/open-mmlab/mmdetection
  • maskrcnn-benchmark
  • SimpleDet
    • pytorch
    • 图森未来
  • Tensorpack
    • tensorflow

目标检测方法

{ 阶 段 { o n e − s t a g e : Y O L O 1 ( 2016 ) , S S D , P o l a r − N e t ( 2019 ) t w o − s t a g e : R − C N N 2014 , D y n a m i c R − C N N 2020 锚 框 { a n c h o r : F a s t e r − R − C N N , S S D , Y O L O v 2 + a n c h o r − f r e e : F C O S \begin{cases} 阶段\begin{cases} one-stage:YOLO1(2016),SSD,Polar-Net(2019) \\two-stage:R-CNN2014,Dynamic R-CNN2020 \end{cases} \\锚框\begin{cases} anchor:Faster-R-CNN,SSD,YOLOv2+ \\anchor-free:FCOS \end{cases} \end{cases} {onestage:YOLO1(2016),SSD,PolarNet(2019)twostage:RCNN2014,DynamicRCNN2020{anchor:FasterRCNN,SSD,YOLOv2+anchorfree:FCOS

目标检测过程

数据集打标签

  • LabelIme:曲面边缘
  • OpenCV/CVAT:MASK-R-CNN
  • VOTT,VIA
  • PixelAnnotationTool:超分辨率

数据集类型

  • 语义分割:semantic segmentation
  • 实例分割:instance
  • 常用:VOC&COCO

数据集的文件格式,需要转换为模型输入的格式(比如记录锚框位置信息的XML)

环境配置注意

  • CUDA的版本需要对应硬件GPU,cudan

设置参数训练Train&验证validation&(测试test)&调参

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值