机器学习中的距离计算

1、Euclidean distance 欧氏距离
也叫作欧几里得距离,就是两个点的直线距离,计算方式就是平方差的异相加开根号。

2.Manhattan distance 曼哈顿距离
这个距离值得应该是实际生活中两点可达的距离,比如下图:
这里写图片描述
这个时候因为有河流存在,所以A不能直接到达B,需要走红色路径通过桥来去到B,这个时候AB绿色路径就是欧式距离,红色部分的路径就是Manhattan distance.

3. 以上两种其实都是Lp-norm范数的特殊形式

d(X,Y)=i=dm|xiyi|p1/p

4. 马氏距离

关于马氏距离比较详细的一个解释,可以看这位博主的博客,很棒:
http://blog.csdn.net/jmy5945hh/article/details/20536929

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值