求解线性回归方程

最小二乘法求解单变量线性回归

已知数据集 ( x 1 , y 1 ) , ( x 2 , y 2 ) . . . ( x N , y N ) {(x_1, y_1), (x_2, y_2)...(x_N, y_N)} (x1,y1),(x2,y2)...(xN,yN)
假设一元线性回归方程为 y ^ = b ∗ x + a \hat y = b*x+a y^=bx+a,接下来用最小二乘法求解a和b
损 失 函 数 L ( a , b ) = Σ i = 1 N ( y ^ i − y i ) 2 = Σ i = 1 N ( b ∗ x i + a − y i ) 2 \displaystyle 损失函数\mathcal{L}(a, b) = \Sigma_{i=1}^N (\hat y_i-y_i)^2 = \Sigma_{i=1}^N (b*x_i+a-y_i)^2 L(a,b)=Σi=1N(y^iyi)2=Σi=1N(bxi+ayi)2
∂ L ∂ a = Σ i = 1 N 2 ( b ∗ x i + a − y i ) = Σ i = 1 N 2 b x i + 2 a N − Σ i = 1 N y i = 2 b N x ‾ + 2 a N − N y ‾ = 2 N ( b x ‾ + a − y ‾ ) \displaystyle \frac {\partial \mathcal{L}} {\partial a} = \Sigma_{i=1}^N 2(b*x_i+a-y_i) = \Sigma_{i=1}^N 2bx_i + 2aN - \Sigma_{i=1}^N y_i =2bN \overline x +2aN-N \overline y = 2N(b \overline x +a- \overline y) aL=Σi=1N2(bxi+ayi)=Σi=1N2bxi+2aNΣi=1Nyi=2bNx+2aNNy=2N(bx+ay)
∂ L ∂ a = 0 \displaystyle \frac {\partial \mathcal{L}} {\partial a} = 0 aL=0,求得 a = y ‾ − b x ‾ a = \overline y-b \overline x a=ybx,带入 L ( a , b ) \mathcal{L}(a, b) L(a,b)

L ( a , b ) = Σ i = 1 N ( b ∗ x i + y ‾ − b x ‾ − y i ) 2 = Σ i = 1 N [ b ( x i − x ‾ ) − ( y i − y ‾ ) ] 2 \displaystyle \mathcal{L}(a, b) = \Sigma_{i=1}^N (b*x_i + \overline y - b \overline x - y_i)^2 = \Sigma_{i=1}^N [b(x_i - \overline x) - (y_i - \overline y)]^2 L(a,b)=Σi=1N(bxi+ybxyi)2=Σi=1N[b(xix)(yiy)]2

∂ L ∂ b = Σ i = 1 N 2 ( x i − x ‾ ) [ b ( x i − x ‾ ) − ( y i − y ‾ ) ] = Σ i = 1 N [ 2 b ( x i − x ‾ ) 2 − 2 ( x i − x ‾ ) ( y i − y ‾ ) ] = 2 b Σ i = 1 N ( x i − x ‾ ) 2 − 2 Σ i = 1 N ( x i − x ‾ ) ( y i − y ‾ ) = 2 b V a r ( x ) − 2 C o v ( x , y ) \displaystyle \frac {\partial \mathcal{L}} {\partial b} = \Sigma_{i=1}^N 2(x_i - \overline x )[b(x_i - \overline x) - (y_i - \overline y)] = \Sigma_{i=1}^N[2b(x_i - \overline x)^2 - 2(x_i - \overline x)(y_i - \overline y)] = 2b\Sigma_{i=1}^N (x_i - \overline x)^2 - 2\Sigma_{i=1}^N (x_i - \overline x)(y_i - \overline y) =2bVar(x) - 2Cov(x, y) bL=Σi=1N2(xix)[b(xix)(yiy)]=Σi=1N[2b(xix)22(xix)(yiy)]=2bΣi=1N(xix)22Σi=1N(xix)(yiy)=2bVar(x)2Cov(x,y)
∂ L ∂ b = 0 \displaystyle \frac {\partial \mathcal{L}} {\partial b} = 0 bL=0,求得 b = C o v ( x , y ) V a r ( x ) \displaystyle b = \frac {Cov(x, y)} {Var(x)} b=Var(x)Cov(x,y)

最小二乘法求解多变量线性回归

上面处理的是 x i , y i ∈ R x_i, y_i \in R xi,yiR的情况,下面讨论多变量线性回归。假设 x i ∈ R 1 × D ( 行向量 ) , y i ∈ R , x ∈ R N × D , y ∈ R N \boldsymbol x_i \in R^{1 \times D}(\textbf {行向量}), \boldsymbol y_i \in R, \boldsymbol x \in R^{N \times D}, \boldsymbol y \in R^N xiR1×D行向量,yiR,xRN×D,yRN,其中N为样本总个数,D为特征维数。
假设线性回归模型为 y ^ = x ⋅ θ \hat \boldsymbol y = \boldsymbol x \cdot \boldsymbol \theta y^=xθ,接下来用最小二乘法求解 θ ∈ R D \boldsymbol \theta \in R^D θRD
损 失 函 数 L ( θ ) = ∣ ∣ x θ − y ∣ ∣ 2 = ∣ ∣ e ∣ ∣ 2 = e T e , ( e = x θ − y ) 损失函数\mathcal{L}(\boldsymbol \theta) = || \boldsymbol x \boldsymbol \theta - \boldsymbol y||^2 = ||\boldsymbol e||^2 = \boldsymbol e^\mathrm T \boldsymbol e, (\boldsymbol e = \boldsymbol x \boldsymbol \theta - \boldsymbol y) L(θ)=xθy2=e2=eTe,(e=xθy)
根据链式法则
∂ L ∂ θ = ∂ L ∂ e ∂ e ∂ θ = 2 e T x = 2 ( x θ − y ) T x = 2 θ T x T x − 2 y T x \displaystyle \frac {\partial \mathcal{L}} {\partial \boldsymbol \theta} = \frac {\partial \mathcal{L}} {\partial \boldsymbol e} \frac {\partial \boldsymbol e} {\partial \boldsymbol \theta}= 2\boldsymbol e^\mathrm T\boldsymbol x = 2(\boldsymbol x \boldsymbol \theta - \boldsymbol y)^\mathrm T \boldsymbol x = 2\boldsymbol \theta^\mathrm T \boldsymbol x^\mathrm T \boldsymbol x - 2\boldsymbol y^\mathrm T \boldsymbol x θL=eLθe=2eTx=2(xθy)Tx=2θTxTx2yTx

∂ L ∂ θ = 0 \displaystyle \frac {\partial \mathcal{L}} {\partial \boldsymbol \theta} = 0 θL=0,得到 θ T x T x = y T x \boldsymbol \theta^\mathrm T \boldsymbol x^\mathrm T \boldsymbol x = \boldsymbol y^\mathrm T \boldsymbol x θTxTx=yTx,两边同时转置,得到 x T x θ = x T y \boldsymbol x^\mathrm T \boldsymbol x \boldsymbol \theta = \boldsymbol x^\mathrm T \boldsymbol y xTxθ=xTy
注意 x T x ∈ R D × D \displaystyle \boldsymbol x^\mathrm T \boldsymbol x \in R^{D \times D} xTxRD×D是一个半正定对称矩阵,可逆。因此,最终的解为
θ = ( x T x ) − 1 x T y \boldsymbol \theta = (\boldsymbol x^\mathrm T \boldsymbol x )^{-1}\boldsymbol x^\mathrm T \boldsymbol y θ=(xTx)1xTy

mathematics for machine learning
http://detexify.kirelabs.org/symbols.html
https://www.jianshu.com/p/6de552393933

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值