1. 隐藏层的内部实现
- 如图通常来说,该模型一共有两层,不包括输入层(layer 0),第一层是隐藏层(layer 1),第二层是输出层(layer 2),我们可以用方括号上标来表示当前参数在第几层,当前在隐藏层,所以方括号上标为[1]
- layer 1中的每一个神经元的输入都是向量X,不必手动选择某些特征传递,直接整体传递即可。且每一个神经元都可看作一个小的逻辑回归函数,因此它也就拥有特征向量W,特征b。每个神经元都会输出激活值a,即逻辑回归函数g(z)的值。我们可以用下标来区分该层中的不同神经元的向量W,b,a。
- layer 1中所有神经元的输出,可以合成一个激活向量a,并把向量a作为layer 2的输入传递给layer 2
2. 输出层的内部实现
- 因为该输出层只有一个神经元,所以layer 2的输出是一个数字,而不是一个向量。且当前在输出层,所以方括号上标为[2]
- 可以设阈值为0.5,当输出层的输出结果大于等于0.5时,预测y的值为1。如果小于0.5时,预测y的值为0
3. 神经网络的工作原理
- 综上:每层都输入一个向量,并将该向量应用于一些逻辑回归函数,计算并输出另一个向量,依次一层层的执行,直到得到最终的输出层的输出结果,即该神经网络的结果,并依据设定的阈值(如0.5),选择得出或不得出最终的预测结果。
4. 复杂神经网络的练习
- 如图通常来说,该神经网络有4层,输入层并不算在内。空白处表示layer 3的第二个神经元,所以该神经元的参数为上标3,下标2,但向量a为layer 2的输出,所以向量a的上标为2
- 对于任意第l层的任意第j单元(神经元),它的激活值a的公式如图
- g函数为sigmoid函数,也叫激活函数,因为g函数是输出激活值a的函数
- 为了让layer 1的激活值a也能使用公式,我们把输入向量x写成向量a,上标0