机器学习 day15(神经网络的工作原理,激活值a的公式)

文章详细阐述了神经网络中隐藏层和输出层的内部实现,每个神经元如何通过逻辑回归函数进行计算,以及整个网络如何层层传递信息至最终输出,并介绍了sigmoid激活函数的作用。在输出层,通过设定阈值(如0.5)进行预测结果的判断。
摘要由CSDN通过智能技术生成

1. 隐藏层的内部实现
在这里插入图片描述

  • 如图通常来说,该模型一共有两层,不包括输入层(layer 0),第一层是隐藏层(layer 1),第二层是输出层(layer 2),我们可以用方括号上标来表示当前参数在第几层,当前在隐藏层,所以方括号上标为[1]
  • layer 1中的每一个神经元的输入都是向量X,不必手动选择某些特征传递,直接整体传递即可。且每一个神经元都可看作一个小的逻辑回归函数,因此它也就拥有特征向量W,特征b。每个神经元都会输出激活值a,即逻辑回归函数g(z)的值。我们可以用下标来区分该层中的不同神经元的向量W,b,a。
  • layer 1中所有神经元的输出,可以合成一个激活向量a,并把向量a作为layer 2的输入传递给layer 2

2. 输出层的内部实现
在这里插入图片描述

  • 因为该输出层只有一个神经元,所以layer 2的输出是一个数字,而不是一个向量。且当前在输出层,所以方括号上标为[2]
    在这里插入图片描述
  • 可以设阈值为0.5,当输出层的输出结果大于等于0.5时,预测y的值为1。如果小于0.5时,预测y的值为0

3. 神经网络的工作原理

  • 综上:每层都输入一个向量,并将该向量应用于一些逻辑回归函数,计算并输出另一个向量,依次一层层的执行,直到得到最终的输出层的输出结果,即该神经网络的结果,并依据设定的阈值(如0.5),选择得出或不得出最终的预测结果。

4. 复杂神经网络的练习
在这里插入图片描述

  • 如图通常来说,该神经网络有4层,输入层并不算在内。空白处表示layer 3的第二个神经元,所以该神经元的参数为上标3,下标2,但向量a为layer 2的输出,所以向量a的上标为2
    在这里插入图片描述
    在这里插入图片描述
  • 对于任意第l层的任意第j单元(神经元),它的激活值a的公式如图
  • g函数为sigmoid函数,也叫激活函数,因为g函数是输出激活值a的函数
  • 为了让layer 1的激活值a也能使用公式,我们把输入向量x写成向量a,上标0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丿罗小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值