1. 烤咖啡豆模型
- 使用一维数组来表示这些向量和参数,所以只有一个方括号
- W1_1:表示layer 1的第一个神经元的W
- Z1_1:表示 W1_1和输入X之间的点积,再与b1_1相加
- a1_1:表示应用Z1_1的sigmoid函数
- a1:表示把a1_1,a1_2,a1_3合成一个一维数组,作为layer 1的输出
2. dense() 函数的实现
- W可以看作一个 2 * 3的矩阵,第一列是参数w1_1,第二列是参数w1_2,第三列是参数w1_3。b可以看作一个一维数组。
- dense() 函数的作用是:给定参数w、b和激活函数g()、上一层的激活值,然后输出当前层的激活值
- shape[0]:行数,shape[1]:列数。而此处W矩阵的列数等于该层的神经单元数
- 初始化a_out数组,令其元素数等于该层单元数,并把它设为0数组
- j为索引,从0到该层单元数减一,即0、1、2
- [ : , j ],二维数组切片,取第j列的每一行,即表示取矩阵的第j列
- 用dot() 函数来计算w和a_in的点积,加上b,之后整体作为z带入g()函数,得出该单元的激活值a_out[j]
- 输出a_out,该层的激活值
3. sequential() 函数的实现
- 给定输入特征X,之后计算每一层的激活值a,其中W、b有时也称为该层的权重。返回最后一层的激活值f_x,即a4,也就是整个神经网络模型的结果f_x
- 这里使用W,根据约定,矩阵用大写字母,向量或标量用小写字母