机器学习 day19(使用python和np实现前向传播)

文章介绍了烤咖啡豆模型,其中用一维数组表示向量和参数,详细解析了dense()函数的实现,它通过矩阵运算和激活函数计算层的输出。此外,还概述了sequential()函数如何处理输入特征,计算各层激活值,最终得到整个神经网络的输出。
摘要由CSDN通过智能技术生成

1. 烤咖啡豆模型
在这里插入图片描述

  • 使用一维数组来表示这些向量和参数,所以只有一个方括号
  • W1_1:表示layer 1的第一个神经元的W
  • Z1_1:表示 W1_1和输入X之间的点积,再与b1_1相加
  • a1_1:表示应用Z1_1的sigmoid函数
  • a1:表示把a1_1,a1_2,a1_3合成一个一维数组,作为layer 1的输出

2. dense() 函数的实现
在这里插入图片描述

  • W可以看作一个 2 * 3的矩阵,第一列是参数w1_1,第二列是参数w1_2,第三列是参数w1_3。b可以看作一个一维数组。
  • dense() 函数的作用是:给定参数w、b和激活函数g()、上一层的激活值,然后输出当前层的激活值
  • shape[0]:行数,shape[1]:列数。而此处W矩阵的列数等于该层的神经单元数
  • 初始化a_out数组,令其元素数等于该层单元数,并把它设为0数组
  • j为索引,从0到该层单元数减一,即0、1、2
  • [ : , j ],二维数组切片,取第j列的每一行,即表示取矩阵的第j列
  • 用dot() 函数来计算w和a_in的点积,加上b,之后整体作为z带入g()函数,得出该单元的激活值a_out[j]
  • 输出a_out,该层的激活值

3. sequential() 函数的实现
在这里插入图片描述

  • 给定输入特征X,之后计算每一层的激活值a,其中W、b有时也称为该层的权重。返回最后一层的激活值f_x,即a4,也就是整个神经网络模型的结果f_x
  • 这里使用W,根据约定,矩阵用大写字母,向量或标量用小写字母
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丿罗小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值