GPS大地高转1985国家高程系统
EGM位模型采用的地球尺度参数包括:地心引力常数GM和半长轴a。对于EGM2008,GM = 3.986 004 415×1014 m3s-2、a = 6 378 136.3 m。由位模型可计算扰动场元。扰动场元依托的正常椭球由地球尺度参数决定;根据布隆斯公式可知,扰动场元依托的大地水准面与正常椭球面等位,即EGM2008理论大地水准面。
GNSS测出点位大地高,减去位模型计算的大地水准面高,可得到点位正高。
h=H-N
这个过程中要求位模型使用的正常椭球(地球尺度参数)与GNSS大地高依托的参考椭球一致。否则就如同:
2美元 + 3日元 = 5美元
EGM2008的地球尺度参数a,与大地高常用的GRS80、CGCS2000、WGS-84椭球的半长轴相差0.7 m。导致用大地高减去大地水准面高得到正高时,也会存在约0.7 m的系统差。实际是与参考椭球等位的大地水准面上的高。直接用这个系统差修正正高,即可得到基于EGM2008理论大地水准面的高程。
关于高程异常的问题
假设测区求得的1985高程不准确,你是否可以发现错误,答案是否定的,你根本就发现不了错误,用错误的高程也可以求解出测区的七参数,只不过高程都是错误的,大地水准面是一个物理面,物体在大地水准面上移动不需要做功,所以所谓高程值也就是海拔高是一个物理模型下的参数,其值以大地水准面为基准求解,地球椭球是一个数学模型,有严密的几何关系,所以说椭球体确定空间直角坐标就确定了,一般说的布尔沙七参数模型求解的就是空间直角坐标下的关系转换,平时的平面坐标加高程求解的七参数不是严格意义上的布尔沙模式,平面坐标是数学椭球模型下的经纬度大地坐标经过高斯正算投影求解的平面坐标,我们平时接触的GPS求得的结果是高斯投影平面坐标加海拔高(椭球高——点位到椭球的法线距离),工程用的坐标是高斯投影坐标加1985正常高,都不是严格的三维坐标.
GOOGLE中的高程
①google里面的高程值是海拔高,和gps测得高程是不一致的,与中国现行的1985高程之间差距不大,可以用作检查地形图精度。
②中国境内采用的是1985高程,和大地高(gps测的高程数据)高程数据之间差了一个高程异常值。
为什么不用正高代替正常高
先下结论:在陆地上,似大地水准面(正常高)具有可操作性,大地水准面(正高)没有实际操作性。
大地水准面是重力等位面,重力矢量是大地水准面的梯度,因此正高是沿着曲线从地面到大地水准面的。大地水准面(正高)系统符合严格的物理模型。由于陆地区域大地水准面无法观测到,因此,这个系统只是纸上谈兵。
似大地水准面从地面点沿正常重力线量取正常高所得端点构成的封闭曲面。这里的正常重力线是该地面的垂线,是直线。而正常高是通过联测水准原点确定的,而水准原点附近的验潮站,就是确定大地水准面实际位置的。因此,这个系统具有可操作性。
在海面上,似大地水准面和大地水准面重合,在陆地上两者一般相差不大。而差值跟两个因素有关,一个是观测点的绝对高程,一个是观测点附近地球体的质量分布。很容易理解,推算的距离越长,直线方向和曲线方向引起的差别越大,西藏地区的水准测量上,有很明显的体现;而观测点附近的不均匀质量分布,会引起当地垂线方向与大地水准面梯度方向差别过大,造成即使推算距离很短,两个面也会有比较大的差距。例如,华山地区的水准观测,就能体现这点。据说质量分布差异非常大的地区,会出现“水往高处流”的异常景象。
我国曾用的各种高程相对于1985国家高程基准之间的高程差如下:
NHD85-HHS54=0.074m
NHD85-HHS56=-0.029m
NHD85-大连高程基准=-0.002m
NHD85-大沽高程基准=-1.246m
NHD85-废黄河高程基准=-0.159m
NHD85-吴淞高程基准=-1.717m
NHD85-坎门高程基准=0.231m
NHD85-珠江高程基准=0.557m