旋转矩阵的推导

本文参照百度文库:https://wenku.baidu.com/view/5345572afc4ffe473368ab61.html

采用欧拉角对于SO(3)进行描述时,其转动方向如下:

1)先将坐标系绕Z轴转\alpha角,这是矢量\arrow{r}会变为r^',两者的关系如下:

                                                  r ^ { \prime } = R _ { z } ( \alpha ) r                                                                     (1)

对于R _ { z } ( \alpha )有:

                                R _ { z } ( \alpha ) = \left( \begin{array} { c c c } { \cos \alpha } & { - \sin \alpha } & { 0 } \\ { \sin \alpha } & { \cos \alpha } & { 0 } \\ { 0 } & { 0 } & { 1 } \end{array} \right)                                                     (2)

2)接着绕新的y^{\prime}轴旋转\beta角,矢量r^{\prime}变为r^{\prime \prime}两者的关系如下:

                                                  r ^ { \prime \prime } = R _ { y ^ { \prime } } ( \beta ) r ^ { \prime }                                                                   (3)

对于R _ { y ^ { \prime } } ( \beta )有:

                            R _ { y } ( \beta ) = \left( \begin{array} { c c c } { \cos \beta } & { 0 } & { \sin \beta } \\ { 0 } & { 1 } & { 0 } \\ { - \sin \beta } & { 0 } & { \cos \beta } \end{array} \right)                                                          (4)

显然有:

                              \mathrm { R } _ { \mathrm { y } ^ { \prime } } ( \beta ) = \mathrm { R } _ { z } ( \alpha ) \mathrm { R } _ { \mathrm { y } } ( \beta ) \mathrm { R } _ { z } ^ { - 1 } ( \alpha )                                                              (5)

 对于式(5)的解释如下,看上式中的\mathrm { R } _ { z } ^ { - 1 } ( \alpha ) 表示将y^{\prime}轴回到原始的y轴,这样y^{\prime}y重合,然后绕y轴旋转\beta角,即R _ { y } ( \beta )

最后再回到y^{\prime}轴,即\mathrm { R } _ { z } ( \alpha ),即可得到式(5)

将式(5)代入式(3)可得:r ^ { \prime \prime \prime } = R _ { z ^ { \prime } } ( \gamma ) r ^ { \prime \prime }

                                      r ^ { \prime \prime } = R _ { z } ( \alpha ) R _ { y } ( \beta ) r                                                                        (6)

3)最后绕z轴转\gamma角得到:

                                       r ^ { \prime \prime \prime } = R _ { z ^ { \prime } } ( \gamma ) r ^ { \prime \prime }                                                                              (7)

而:

                        \mathrm { R } _ { z ^ { * } } ( \gamma ) = \mathrm { R } _ { z } ( \alpha ) \mathrm { R } _ { y } ( \beta ) \mathrm { R } _ { z } ( \gamma ) \left[ \mathrm { R } _ { z } ( \alpha ) \mathrm { R } _ { y } ( \beta ) \right] ^ { - 1 }                                           (8)

将式(8)代入式(6)、式(7)有:

                                      \begin{aligned} r ^ { \prime \prime \prime } & = R _ { z } ( \alpha ) R _ { y } ( \beta ) R _ { z } ( \gamma ) r \\ & = R ( \alpha , \beta , \gamma ) r \end{aligned}                                                             (9)

 \begin{aligned} R ( \alpha , \beta , \gamma ) & = R _ { z } ( \alpha ) R _ { y } ( \beta ) R _ { z } ( \gamma ) \\ & = \left( \begin{array} { c c c } { \cos \alpha } & { - \sin \alpha } & { 0 } \\ { \sin \alpha } & { \cos \alpha } & { 0 } \\ { 0 } & { 0 } & { 1 } \end{array} \right) \left( \begin{array} { c c c } { \cos \beta } & { 0 } & { \sin \beta } \\ { 0 } & { 1 } & { 0 } \\ { - \sin \beta } & { 0 } & { \cos \beta } \end{array} \right) \left( \begin{array} { c c c }{ \cos \gamma } & { -\sin \gamma } & { 0 } \\{ \sin \gamma } & { \cos \gamma } & { 0 } \\ { 0 } & { 0 } & { 1 } \end{array} \right) \end{aligned} (10)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值