坐标系旋转矩阵推导过程

一、先来个平面旋转的分析:

两角和(差)公式

推导

旋转变换一般是按照某个圆心点,以一定半径 旋转一定的角度α,为了简单起见我们给出下面的情景

假定点A(x,y)想经过旋转变换到达B(x',y'),已知旋转角度α和点A坐标,计算出点B


要计算点B则分别计算他的x'和y'分量

根据矩阵乘法计算规则,可以推出 

只要给出旋转角度,计算出矩阵,然后使用这个矩阵分别左乘每一个点,就能计算出这个点旋转后的点坐标 这样我们就可以通过矩阵变换坐标了 



二、延伸到三维坐标:

    坐标的旋转变换在很多地方都会用到,比如机器视觉中的摄像机标定、图像处理中的图像旋转、游戏编程等。

    任何维的旋转可以表述为向量与合适尺寸的方阵的乘积。最终一个旋转等价于在另一个不同坐标系下对点位置的重新表述。坐标系旋转角度θ则等同于将目标点围绕坐标原点反方向旋转同样的角度θ。

    若以坐标系的三个坐标轴X、Y、Z分别作为旋转轴,则点实际上只在垂直坐标轴的平面上作二维旋转。

   假设三维坐标系中的某一向量 ,其在直角坐标系中的图如图1所示。其中点P在XY平面、XZ平面、YZ平面的投影分别为点M、点P、点N。
 
                                              
                                                                 图1 直角坐标系XYZ

   1、 绕Z轴旋转θ角
    绕Z轴旋转,相当于 在XY平面的投影OM绕原点旋转,如下图所示,OM旋转θ角到OM'。
                                                 
                                                            
                                                                   图2 向量绕Z轴旋转示意图

   设旋转前的坐标为 ,旋转后的坐标为 ,则点M的坐标为 ,点M'的坐标为 。由此可得:
                                                       
    对于 进行三角展开可得:
                                                      
    且有 ;可得绕Z轴旋转 角的旋转矩阵为:
                         
                                                                   

   2、 绕X轴旋旋转θ角


   绕X轴旋转,相当于 在YZ平面的投影ON绕原点旋转,如下图所示,ON旋转θ角到ON'。
                                                             
                                                                   图3 向量绕X轴旋转示意图

   设旋转前的坐标为 ,旋转后的坐标为 ,则点N的坐标为 ,点N'的坐标为 。由此可得:

                                                   
    对于 进行三角展开可得:
                                                
    且有 ;可得绕X轴旋转 角的旋转矩阵为:
                         
                                                         

    3、 绕Y轴旋旋转θ角
   绕Y轴旋转,相当于 在XZ平面的投影OQ绕原点旋转,如下图所示,OQ旋转θ角到OQ'。
                                                 
                                                            
                                                                   图4 向量绕Y轴旋转示意图

   设旋转前的坐标为 ,旋转后的坐标为 ,则点Q的坐标为 ,点Q'的坐标为 。由此可得:

                                               
    对于 进行三角展开可得:
                                             
    且有 ;可得绕Y轴旋转 角的旋转矩阵为:
                         
                                           



   4、绕X、Y、Z轴旋转的旋转矩阵分别为:
 
                




### 刚体旋转矩阵与方向余弦矩阵的关系 在三维空间中,刚体的旋转可以通过旋转矩阵来描述。此矩阵不仅用于表示不同坐标系间同一向量坐标的转换关系,还具体描绘了旋转的本质[^2]。 #### 定义与性质 方向余弦矩阵由两组不同的标准正交基之间基底向量的方向余弦构成。假设存在两个直角坐标系 \( OXYZ \) 和 \( Ox'y'z' \),其中每一轴都有对应的单位矢量作为各自的标准正交基,则这两个坐标系之间的相对姿态可通过一个3×3阶方阵表示出来,这个矩阵就是所谓的方向余弦矩阵\[ R=\begin{bmatrix} l_{xx'} & m_{xy'}& n_{xz'} \\l_{yx'} &m_{yy'} &n_{yz'}\\l_{zx'} &m_{zy'} &n_{zz'}\end{bmatrix}\][^4]。 这里, - \( l, m, n \) 表示的是原坐标系中的某条轴线(\(X\) 或者 \(Y\) 或者 \(Z\))投影到新坐标系相应轴上的分量; - 下标分别代表旧坐标系和新坐标系对应轴名; 因此,当考虑从原始坐标系转至目标坐标系过程时,上述矩阵实际上起到了桥梁作用,它能够将任意向量按照新的参照框架重新表述。 #### 数学推导过程 给定任意初始状态下的向量 \(V_0=a_i+b_j+c_k\) ,经过一次旋转变换后变为 \(V'=a'_i'+b'_j'+c'_k'\)。此时有: \[ V' = RV_0 \] 这意味着通过乘以旋转矩阵 \(R\) 可实现对原向量 \(V_0\) 坐标的更新操作。而为了构建这样的变换规则,就需要计算每一对相互垂直且长度相等的基础向量间的夹角余弦值并填入相应的行列位置形成最终的形式化表达式。 对于单次绕固定轴转动的情况来说,比如仅围绕 \(Z\) 轴发生角度变化 θθ 的情形下,其具体的 DCM 形态如下所示: ```matlab % 绕 Z 轴旋转的角度为 theta theta = pi / 4; % 示例取 π/4 即 45 度 DCM_z_rotation = [cos(theta), -sin(theta), 0; sin(theta), cos(theta), 0; 0, 0, 1]; ``` 同样的逻辑适用于其他两种情况(即沿 \(X\) 或 \(Y\) 轴),只是内部元素排列有所区别而已[^3]。 综上所述,无论是称为“旋转矩阵”还是“方向余弦矩阵”,本质上都是指同一个概念的不同称呼方式,在实际应用当中二者是可以互换使用的[^1]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值