阵列信号处理中协方差矩阵为什么重要

阵列信号处理中协方差矩阵为什么重要

如下图所示为阵列探测示意图,其中目标到达角定义为信号入射方向与阵列法线之间的夹角,在窄带(点信源)和远场(平面波)的假设下,同一信号到达不同阵元存在波程差,这个波程差导致了各接收阵元的相位差,该相位差组成阵列的导向矢量和阵列流型矩阵。

图1 阵列信号探测示意图

设阵元数为 M M M,信源数为 N N N,第n个信源的到达角为 θ n \theta_n θn则其对应的导向矢量可以表示为 a ( θ n ) = [ 1 , e − i 2 π d s i n ( θ n ) / λ , . . . , e − i 2 π ( M − 1 ) d s i n ( θ N ) / λ ] T \boldsymbol{a}(\theta_n)=[1,e^{-i2\pi d{\rm sin}(\theta_n)/\lambda},...,e^{-i2\pi (M-1)d{\rm sin}(\theta_N)/\lambda}]^T a(θn)=[1,ei2πdsin(θn)/λ,...,ei2π(M1)dsin(θN)/λ]T,所有信源组成的阵列流型矩阵可以表示为

A ( θ ) = [ a ( θ 0 ) , . . . , a ( θ p ) , . . . , a ( θ N − 1 ) ] = [ 1 , 1 , . . . , 1 e − i 2 π d s i n ( θ 0 ) / λ , e − i 2 π d s i n ( θ 1 ) / λ , . . . , e − i 2 π d s i n ( θ N − 1 ) / λ ⋮ , ⋮ , ⋮ , ⋮ e − i 2 π ( M − 1 ) d s i n ( θ 0 ) / λ , e − i 2 π ( M − 1 ) d s i n ( θ 1 ) / λ , . . . , e − i 2 π ( M − 1 ) d s i n ( θ N − 1 ) / λ ] (1) \begin{equation} \begin{aligned} \boldsymbol{A}(\boldsymbol{\theta})&=[\boldsymbol{a}(\theta_0),...,\boldsymbol{a}(\theta_p),...,\boldsymbol{a}(\theta_{N-1})]\\ &= \begin{bmatrix} &1,&1,&...,&1\\ &e^{-i2\pi d{\rm sin}(\theta_0)/\lambda},&e^{-i2\pi d{\rm sin}(\theta_1)/\lambda},&...,&e^{-i2\pi d{\rm sin}(\theta_{N-1})/\lambda}\\ &\vdots,&\vdots,&\vdots,&\vdots\\ &e^{-i2\pi (M-1)d{\rm sin}(\theta_0)/\lambda},&e^{-i2\pi (M-1)d{\rm sin}(\theta_1)/\lambda},&...,&e^{-i2\pi (M-1)d{\rm sin}(\theta_{N-1})/\lambda} \end{bmatrix} \end{aligned} \end{equation}\tag{1} A(θ)=[a(θ0),...,a(θp),...,a(θN1)]= 1,ei2πdsin(θ0)/λ,,ei2π(M1)dsin(θ0)/λ,1,ei2πdsin(θ1)/λ,,ei2π(M1)dsin(θ1)/λ,...,...,,...,1ei2πdsin(θN1)/λei2π(M1)dsin(θN1)/λ (1)

从(1)可以看出, A ( θ ) \boldsymbol{A}(\boldsymbol{\theta}) A(θ)是一个范德蒙矩阵,且当 M > = N M>=N M>=N,即信源数小于阵列维数时,阵列流型矢量是非奇异的。

所以阵列信号的接收模型可以表示为

x ( t ) = A ( θ ) s ( t ) + n ( t ) (2) \boldsymbol{x}(t)=\boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t)+\boldsymbol{n}(t)\tag{2} x(t)=A(θ)s(t)+n(t)(2)

其中 s ( t ) = [ s 0 ( t ) , . . . , s N − 1 ( t ) ] T \boldsymbol{s}(t)=[s_0(t),...,s_{N-1}(t)]^T s(t)=[s0(t),...,sN1(t)]T n ( t ) = [ n 0 ( t ) , . . . , n M − 1 ( t ) ] T \boldsymbol{n}(t)=[n_0(t),...,n_{M-1}(t)]^T n(t)=[n0(t),...,nM1(t)]T。计算阵列接收信号的协方差矩阵如下

R x = E [ x ( t ) x H ( t ) ] = A E [ s ( t ) s H ( t ) ] A H + E [ n ( t ) n H ( t ) ] = A R s A H + σ 2 I (3) \begin{equation} \begin{aligned} \boldsymbol{R}_x&={\rm E}[\boldsymbol{x}(t)\boldsymbol{x}^H(t)]=\boldsymbol{A}{\rm E}[\boldsymbol{s}(t)\boldsymbol{s}^H(t)]\boldsymbol{A}^H+{\rm E}[\boldsymbol{n}(t)\boldsymbol{n}^H(t)]=\boldsymbol{A}\boldsymbol{R}_s \boldsymbol{A}^H+\sigma^2 \boldsymbol{I} \end{aligned} \end{equation}\tag{3} Rx=E[x(t)xH(t)]=AE[s(t)sH(t)]AH+E[n(t)nH(t)]=ARsAH+σ2I(3)

对协方差矩阵进行奇异值分解可以得到

R x = A R s A H + σ 2 I = U Σ U H = [ U s , U n ] [ Σ s , O O , Σ n ] [ U s H U n H ] (4) \boldsymbol{R}_x=\boldsymbol{A}\boldsymbol{R}_s \boldsymbol{A}^H+\sigma^2 \boldsymbol{I}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{U}^H=[\boldsymbol{U}_s,\boldsymbol{U}_n]\begin{bmatrix}\boldsymbol{\Sigma}_s,\boldsymbol{O}\\ \boldsymbol{O},\boldsymbol{\Sigma}_n\end{bmatrix} \begin{bmatrix}\boldsymbol{U}_s^H\\\boldsymbol{U}_n^H\end{bmatrix}\tag{4} Rx=ARsAH+σ2I=UΣUH=[Us,Un][Σs,OO,Σn][UsHUnH](4)

其中 Σ s = d i a g ( σ 1 2 + σ 2 , . . . , σ N 2 + σ 2 ) = d i a g ( λ 1 , . . . , λ N ) \boldsymbol{\Sigma}_s={\rm diag}(\sigma_1^2+\sigma^2,...,\sigma_{N}^2+\sigma^2)={\rm diag}(\lambda_1,...,\lambda_N) Σs=diag(σ12+σ2,...,σN2+σ2)=diag(λ1,...,λN) Σ n = σ 2 I \boldsymbol{\Sigma}_n=\sigma^2 \boldsymbol{I} Σn=σ2I,令 U = [ u 1 , . . . , u N , ∣ u N + 1 , . . . , u M ] \boldsymbol{U}=[\boldsymbol{u}_1,...,\boldsymbol{u}_N, |\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M] U=[u1,...,uN,uN+1,...,uM],则 U s = [ u 1 , . . . , u N ] \boldsymbol{U}_s=[\boldsymbol{u}_1,...,\boldsymbol{u}_N] Us=[u1,...,uN] U n = [ u N + 1 , . . . , u M ] \boldsymbol{U}_n=[\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M] Un=[uN+1,...,uM]。根据奇异值分解的性质可知, U \boldsymbol{U} U是一个酉矩阵, { u 1 , . . . , u M } \lbrace\boldsymbol{u}_1,...,\boldsymbol{u}_M\rbrace {u1,...,uM}构成了一组标准正交基,即 u i H u i = 1 \boldsymbol{u}_i^H\boldsymbol{u}_i=1 uiHui=1 u i H u j = 0 , i ≠ j \boldsymbol{u}_i^H\boldsymbol{u}_j=0,i\neq j uiHuj=0,i=j,基于此,下面来证明一些结果:

(1) U s H U s = I , U n H U n = I \boldsymbol{U}_s^H \boldsymbol{U}_s=\boldsymbol{I},\boldsymbol{U}_n^H \boldsymbol{U}_n=\boldsymbol{I} UsHUs=I,UnHUn=I

证明:

U s H U s = [ u 1 H ⋮ u N H ] [ u 1 , . . . , u N ] = [ u 1 H u 1 , . . . , u 1 H u N ⋮ , . . . , ⋮ u N H u 1 , . . . , u N H u N ] = I U n H U n = [ u N + 1 H ⋮ u M H ] [ u N + 1 , . . . , u M ] = [ u N + 1 H u N + 1 , . . . , u N + 1 H u M ⋮ , . . . , ⋮ u M H u N + 1 , . . . , u M H u M ] = I \begin{equation} \begin{aligned} \boldsymbol{U}_s^H \boldsymbol{U}_s&=\begin{bmatrix}\boldsymbol{u}_1^H\\ \vdots\\ \boldsymbol{u}_N^H\end{bmatrix} [\boldsymbol{u}_1,...,\boldsymbol{u}_N]=\begin{bmatrix}&\boldsymbol{u}_1^H \boldsymbol{u}_1,&...,&\boldsymbol{u}_1^H \boldsymbol{u}_N \\ &\vdots,&...,&\vdots\\ &\boldsymbol{u}_N^H \boldsymbol{u}_1,&...,&\boldsymbol{u}_N^H \boldsymbol{u}_N\end{bmatrix}=\boldsymbol{I}\\ \boldsymbol{U}_n^H \boldsymbol{U}_n&=\begin{bmatrix}\boldsymbol{u}_{N+1}^H\\ \vdots\\ \boldsymbol{u}_M^H\end{bmatrix} [\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M]=\begin{bmatrix}&\boldsymbol{u}_{N+1}^H \boldsymbol{u}_{N+1},&...,&\boldsymbol{u}_{N+1}^H \boldsymbol{u}_M \\ &\vdots,&...,&\vdots\\ &\boldsymbol{u}_M^H \boldsymbol{u}_{N+1},&...,&\boldsymbol{u}_M^H \boldsymbol{u}_M\end{bmatrix}=\boldsymbol{I}\\ \end{aligned} \end{equation} UsHUsUnHUn= u1HuNH [u1,...,uN]= u1Hu1,,uNHu1,...,...,...,u1HuNuNHuN =I= uN+1HuMH [uN+1,...,uM]= uN+1HuN+1,,uMHuN+1,...,...,...,uN+1HuMuMHuM =I
(2) U s U s H + U n U n H = I \boldsymbol{U}_s \boldsymbol{U}_s^H+\boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{I} UsUsH+UnUnH=I

证明:
U s U s H = [ u 1 , . . . , u N ] [ u 1 H ⋮ u N H ] = ∑ i = 1 N u i u i H U n U n H = [ u N + 1 , . . . , u M ] [ u N + 1 H ⋮ u M H ] = ∑ i = N + 1 M u i u i H U s U s H + U n U n H = ∑ i = 1 M u i u i H \begin{equation} \begin{aligned} \boldsymbol{U}_s \boldsymbol{U}_s^H&=[\boldsymbol{u}_1,...,\boldsymbol{u}_N]\begin{bmatrix}\boldsymbol{u}_1^H\\ \vdots\\ \boldsymbol{u}_N^H\end{bmatrix}=\sum_{i=1}^N \boldsymbol{u}_i \boldsymbol{u}_i^H\\ \boldsymbol{U}_n \boldsymbol{U}_n^H&=[\boldsymbol{u}_{N+1},...,\boldsymbol{u}_M]\begin{bmatrix}\boldsymbol{u}_{N+1}^H\\ \vdots\\ \boldsymbol{u}_M^H\end{bmatrix}=\sum_{i=N+1}^M \boldsymbol{u}_i \boldsymbol{u}_i^H\\ &\boldsymbol{U}_s \boldsymbol{U}_s^H+\boldsymbol{U}_n \boldsymbol{U}_n^H=\sum_{i=1}^M \boldsymbol{u}_i \boldsymbol{u}_i^H \end{aligned} \end{equation} UsUsHUnUnH=[u1,...,uN] u1HuNH =i=1NuiuiH=[uN+1,...,uM] uN+1HuMH =i=N+1MuiuiHUsUsH+UnUnH=i=1MuiuiH
u i u i H = C , C i , j = { 0 , i ≠ j 1 , i = j \boldsymbol{u}_i \boldsymbol{u}_i^H=\boldsymbol{C},C_{i,j}=\begin{cases}0,i\neq j\\ 1,i=j\end{cases} uiuiH=C,Ci,j={0,i=j1,i=j,所以,显然有 U s U s H + U n U n H = I \boldsymbol{U}_s \boldsymbol{U}_s^H+\boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{I} UsUsH+UnUnH=I

(3) U s U s H = U s ( U s H U s ) − 1 U s H \boldsymbol{U}_s \boldsymbol{U}_s^H=\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H UsUsH=Us(UsHUs)1UsH U n U n H = U n ( U n H U n ) − 1 U n H = I − U s ( U s H U s ) − 1 U s H \boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{U}_n (\boldsymbol{U}_n^H \boldsymbol{U}_n)^{-1}\boldsymbol{U}_n^H=\boldsymbol{I}-\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H UnUnH=Un(UnHUn)1UnH=IUs(UsHUs)1UsH

证明:由证明1可得 U s H U s = I , U n H U n = I \boldsymbol{U}_s^H \boldsymbol{U}_s=\boldsymbol{I},\boldsymbol{U}_n^H \boldsymbol{U}_n=\boldsymbol{I} UsHUs=I,UnHUn=I,所以 U s U s H = U s ( U s H U s ) − 1 U s H \boldsymbol{U}_s \boldsymbol{U}_s^H=\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H UsUsH=Us(UsHUs)1UsH U n U n H = U n ( U n H U n ) − 1 U n H \boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{U}_n (\boldsymbol{U}_n^H \boldsymbol{U}_n)^{-1}\boldsymbol{U}_n^H UnUnH=Un(UnHUn)1UnH显然是成立的,再由证明结果2,可以得到 U n U n H = U n ( U n H U n ) − 1 U n H = I − U s ( U s H U s ) − 1 U s H \boldsymbol{U}_n \boldsymbol{U}_n^H=\boldsymbol{U}_n (\boldsymbol{U}_n^H \boldsymbol{U}_n)^{-1}\boldsymbol{U}_n^H=\boldsymbol{I}-\boldsymbol{U}_s (\boldsymbol{U}_s^H \boldsymbol{U}_s)^{-1}\boldsymbol{U}_s^H UnUnH=Un(UnHUn)1UnH=IUs(UsHUs)1UsH也是成立的。

由上面的证明结果(3)可知, U s U s H \boldsymbol{U}_s \boldsymbol{U}_s^H UsUsH U n U n H \boldsymbol{U}_n \boldsymbol{U}_n^H UnUnH分别表示在s空间和n空间上的投影算子,所以 U s U s H X \boldsymbol{U}_s \boldsymbol{U}_s^H X UsUsHX U n U n H X \boldsymbol{U}_n\boldsymbol{U}_n^H X UnUnHX分别表示将信号 X \boldsymbol{X} X往s空间和n空间上进行投影,基于这个性质可以做很多事情。

(4)可以写成
R x = [ U s , U n ] [ Σ s , O O , Σ n ] [ U s H U n H ] = U s Σ s U s H + U n Σ n U n H = ∑ i = 1 N λ i u i u i H + ∑ i = N + 1 M σ 2 u i u i H (5) \boldsymbol{R}_x=[\boldsymbol{U}_s,\boldsymbol{U}_n]\begin{bmatrix}\boldsymbol{\Sigma}_s,\boldsymbol{O}\\ \boldsymbol{O},\boldsymbol{\Sigma}_n\end{bmatrix} \begin{bmatrix}\boldsymbol{U}_s^H\\\boldsymbol{U}_n^H\end{bmatrix}=\boldsymbol{U}_s\boldsymbol{\Sigma}_s\boldsymbol{U}_s^H+\boldsymbol{U}_n\boldsymbol{\Sigma}_n\boldsymbol{U}_n^H=\sum_{i=1}^N \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^H+\sum_{i=N+1}^M \sigma^2 \boldsymbol{u}_i \boldsymbol{u}_i^H\tag{5} Rx=[Us,Un][Σs,OO,Σn][UsHUnH]=UsΣsUsH+UnΣnUnH=i=1NλiuiuiH+i=N+1Mσ2uiuiH(5)
R x \boldsymbol{R}_x Rx求逆可以得到
R x − 1 = ∑ i = 1 N 1 λ 1 u i u i H + ∑ i = N + 1 M 1 σ 2 u i u i H (6) \boldsymbol{R}_x^{-1}=\sum_{i=1}^N \frac{1}{\lambda_1} \boldsymbol{u}_i \boldsymbol{u}_i^H+\sum_{i=N+1}^M \frac{1}{\sigma^2} \boldsymbol{u}_i \boldsymbol{u}_i^H\tag{6} Rx1=i=1Nλ11uiuiH+i=N+1Mσ21uiuiH(6)
现在考虑杂波抑制前的场景,此时信号中的直达波和多径杂波信号远远强于目标信号和噪声信号,所以上述s空间即为杂波空间,n空间即为目标和噪声空间。由于 λ 1 , . . . , λ N ≫ σ 2 \lambda_1,...,\lambda_N \gg \sigma^2 λ1,...,λNσ2,所以可以对(6)进行如下近似
R x − 1 ≈ ∑ i = N + 1 M 1 σ 2 u i u i H = 1 σ 2 U n U n H (7) \boldsymbol{R}_x^{-1}\approx \sum_{i=N+1}^M \frac{1}{\sigma^2} \boldsymbol{u}_i\boldsymbol{u}_i^H=\frac{1}{\sigma^2}\boldsymbol{U}_n\boldsymbol{U}_n^H\tag{7} Rx1i=N+1Mσ21uiuiH=σ21UnUnH(7)
结合上面证明(3)的结论可知,此时 R x − 1 \boldsymbol{R}_x^{-1} Rx1等效于n空间的投影算子。所以利用 R x − 1 \boldsymbol{R}_x^{-1} Rx1可以将原始信号往能量较弱的信号成分构成的子空间进行投影,可以较好地实现信号分离,正是有这样的性质,在很多空域处理算法中经常能看到 R x − 1 \boldsymbol{R}_x^{-1} Rx1的身影。所以 R x \boldsymbol{R}_x Rx在空域信号处理中具有举足轻重的地位。


参考文献

[1]H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal Process. Mag., vol. 13, no. 4, pp. 67–94, 1996.

[2]Wan X, Yi J, Zhao Z, et al. Experimental research for CMMB-based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70-85.

  • 17
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值