【CNN】——Depthwise卷积与Pointwise卷积

转载自:https://yinguobing.com/separable-convolution/#fn2
请读原文

卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolution就是降低卷积运算参数量的一种典型方法。

常规卷积运算

假设输入层为一个大小为64×64像素、三通道彩色图片。经过一个包含4个Filter的卷积层,最终输出4个Feature Map,且尺寸与输入层相同。整个过程可以用下图来概括。

在这里插入图片描述
此时,卷积层共4个Filter,每个Filter包含了3个Kernel,每个Kernel的大小为3×3。因此卷积层的参数数量可以用如下公式来计算:

Separable Convolution

Separable Convolution在Google的Xception[1]以及MobileNet[2]论文中均有描述。它的核心思想是将一个完整的卷积运算分解为两步进行,分别为Depthwise Convolution与Pointwise Convolution。

Depthwise Convolution

同样是上述例子,一个大小为64×64像素、三通道彩色图片首先经过第一次卷积运算,不同之处在于此次的卷积完全是在二维平面内进行,且Filter的数量与上一层的Depth相同。所以一个三通道的图像经过运算后生成了3个Feature map,如下图所示。
在这里插入图片描述
其中一个Filter只包含一个大小为3×3的Kernel,卷积部分的参数个数计算如下:

N_depthwise = 3 × 3 × 3 = 27

Depthwise Convolution完成后的Feature map数量与输入层的depth相同,但是这种运算对输入层的每个channel独立进行卷积运算后就结束了,没有有效的利用不同map在相同空间位置上的信息。因此需要增加另外一步操作来将这些map进行组合生成新的Feature map,即接下来的Pointwise Convolution。

Pointwise Convolution

Pointwise Convolution的运算与常规卷积运算非常相似,不同之处在于卷积核的尺寸为 1×1×M,M为上一层的depth。所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的Feature map。有几个Filter就有几个Feature map。如下图所示。
在这里插入图片描述
由于采用的是1×1卷积的方式,此步中卷积涉及到的参数个数可以计算为:

N_pointwise = 1 × 1 × 3 × 4 = 12
经过Pointwise Convolution之后,同样输出了4张Feature map,与常规卷积的输出维度相同。

### 传统卷积神经网络 (CNN) 深度可分离卷积的区别 #### 特征提取方式差异 传统卷积神经网络采用标准卷积操作,该方法在一个步骤内完成跨多个通道的空间深度方向上的特征融合。相比之下,深度可分离卷积将这一过程分解成两个独立阶段:首先是逐通道的深度卷积Depthwise Convolution),仅关注单个输入通道内的空间信息;其次是逐点卷积Pointwise Convolution),负责不同通道间的信息交互[^1]。 #### 参数数量计算成本 对于尺寸为 \( N \times C_{in} \times H \times W \) 的输入张量以及大小为 \( K \times K \),输出通道数为 \( C_{out} \) 的卷积核而言: - **传统卷积** 需要大约 \( O(K^2 * C_{in} * C_{out}) \) 个参数来描述滤波器权重矩阵; - 而 **深度可分离卷积** 则只需约 \( O(K^2 * C_{in} + C_{in} * C_{out}) \) 或更少的参数即可实现相似功能[^2]。 这表明,在相同条件下,后者通常具有更低的记忆占用率并能显著加快前向传播速度。 ```python import torch.nn as nn # Traditional convolution layer definition conv_traditional = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3)) # Depthwise separable convolution layers definitions depth_conv = nn.Conv2d( in_channels=3, out_channels=3, groups=3, kernel_size=(3, 3), ) pointwise_conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(1, 1)) ``` #### 性能表现及适用范围 由于其高效的特性,深度可分离卷积特别适合于资源受限环境下的应用开发,比如移动设备端或嵌入式系统上运行的小型模型设计。然而,在追求极致精度而不考虑硬件开销的情况下,则可能仍然倾向于选择传统的 CNN 架构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值