题意就是求满足题目中给出的递归代码的最大递归层数。
由于x[i]只有0和1,所以我们就比较容易想到2-SAT,然后二分递归层数,求出满足要求的最大递归层数。建图的时候,不满足不等式的就是互相矛盾的,然后建边。
#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <algorithm>
#include <vector>
#include <math.h>
#include <map>
#include <queue>
#include <stack>
#include <set>
#define M 40500
#define LL long long
#define Ld __int64
#define eps 0.00001
#define INF 999999999
#define MOD 112233
#define MAX 26
using namespace std;
vector<int> G[M];
int dfn[M],low[M],sccno[M],scc_cnt;
int indx;
stack<int> s;
void Tarjan(int u)
{
indx++;
dfn[u]=low[u]=indx;
s.push(u);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
scc_cnt++;
for(;;)
{
int x=s.top();
s.pop();
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
}
void find_scc(int n)
{
indx=scc_cnt=0;
memset(dfn,0,sizeof(dfn));
memset(sccno,0,sizeof(sccno));
for(int i=0;i<n;i++)
if(!dfn[i])
Tarjan(i);
}
int a[M],b[M],c[M];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&a[i],&b[i],&c[i]);
}
int l=0,r=m+1;
while(l<r)
{
for(int i=0;i<n*2;i++)
G[i].clear();
int mid=(l+r)>>1;
for(int i=0;i<mid;i++)
{
int k=a[i]<<1;
int p=b[i]<<1;
if(c[i]==0) //至少有一个为1
{
G[k].push_back(p^1); //k为0时,p^1一定为1
G[p].push_back(k^1);
}
else if(c[i]==1) //全为0或全为1
{
G[k].push_back(p);
G[p].push_back(k);
G[k^1].push_back(p^1);
G[p^1].push_back(k^1);
}
else //最多有一个为1
{
G[k^1].push_back(p); //k^1为1时,p一定为0
G[p^1].push_back(k);
}
}
find_scc(n*2);
int flag=0;
for(int i=0;i<n*2;i+=2)
{
if(sccno[i]==sccno[i^1])
{
flag=1;
break;
}
}
if(flag)
{
r=mid;
}
else
{
l=mid+1;
}
}
printf("%d\n",r-1);
}
return 0;
}