基于ICA的ASL灌注成像去噪

研究发现,通过独立成分分析(ICA)对动脉自旋标记(ASL)成像数据进行去噪,可以显著提高CBF和ATT的平均值,降低方差,增强SNR并提高可重复性,尤其在急性脑卒中患者中。ICA去噪甚至能在减少一半数据集的情况下仍保持较高信噪比,有望缩短扫描时间。
摘要由CSDN通过智能技术生成

导读

动脉自旋标记(ASL)成像通过追踪磁性标记血液在脑内的积聚来获得灌注图像。由于生成的图像本身具有较低的信噪比(SNR),因此通常会获取多个测量值并取平均值,但代价是增加了扫描持续时间和产生运动伪影的机会。然而,在采集时间有限且患者运动增加的临床环境中,仅采用此策略可能是无效的。本研究考察了使用独立成分分析(ICA)方法对ASL数据进行去噪及其自动化的潜力。

从30名急性脑卒中患者中收集了72个ASL数据集(伪连续ASL;5个不同的标记后延迟:400、800、1200、1600、2000ms;总volume=60)。将基于ICA的去噪效果(手动和自动)与两种不同的去噪方法进行比较:一种是基于主成分的方法(aCompCor),另一种是基于去除受损体积的算法(增强自动血流估计,ENABLE)。采用多项指标评估去噪后数据质量的变化,包括脑血流(CBF)和动脉传输时间(ATT)、SNR和可重复性。此外,估计数据去噪前后的信噪比与重复次数之间的关系。

与原始数据相比,基于ICA的去噪方法显著提高了CBF和ATT的平均值(p<0.001),降低了CBF和ATT方差(p<0.001)、增强了SNR(p<0.001),并提高了可重复性(p<0.05)。基于ICA的手动和自动去噪的性能相当。这些结果超出了aCompCor或ENABLE的影响。基于ICA去噪后,仅使用50%的ASL数据集比使用整个原始数据集的SNR更高。

结果表明,ICA可以用于ASL数据中的信号和噪声分离,提高了采集数据的质量。事实上,这项研究表明,在不影响数据质量的情况下,采集时间可以减少50%,这值得进一步研究。独立成分分类和回归可以按照简单的标准手动执行,也可以自动执行。

前言

脑灌注测量是临床实践中不可或缺的工具,适用于广泛的急性和慢性疾病(如中风和痴呆)。可以使用的方法有很多,每种方法都有其优缺点;动脉自旋标记(ASL)MRI的主要优点是不需要使用外源性造影剂。相反,ASL通过追踪磁性标记血液在大脑中的积聚来生成图像,并通过从未标记的对照图像中减去磁标记图像来获得灌注图像。在采集中使用多个标记后延迟(PLD)可以估计动脉传输时间(ATT)值,这不仅可以提高脑血流(CBF)定量的准确性,还可以提供相关的风险分层信息。

ASL的主要缺点是生成的图像具有低信噪比(SNR)。为了弥补这一点,通常需要采集多个测量值并对其进行平均,但代价是扫描持续时间增加,因此有可能产生运动伪影,其负面影响会通过图像减影过程进一步增强。因此,在急性临床环境中,患者因素,尤其是患者运动增加可能会限制该策略作为提高SNR的手段。

在后处理阶段提出了一些方法,以消除由于图像之间的运动或其他差异源引起的减影误差而导致的结构化噪声,同时尽可能多地保留信号。现有方法包括应用滤波器或移除被认为已损坏的图像体积。然而,这两种策略都有其局限性。滤波器阈值的选择通常是任意的,而不参考成像数据。移除整个体积不可避免地会导致信号丢失,并且在有限的测量值下可能会适得其反。

低信噪比和结构化噪声的挑战并非ASL所独有。基于BOLD的功能性MRI(fMRI)也存在同样的问题。在BOLD fMRI数据的后处理中使用独立成分分析(ICA)已被证明能够可靠地将信号与伪影或结构化噪声分离,与传统的后处理方法相比,能够显著改善结果。在弥散加权成像和动态磁化率对比MRI中,也探索了ICA提高SNR的效用。将其应用于临床前ASL数据时,已初步显示出良好的应用前景。

本研究考察了基于ICA的去噪在急性缺血性脑卒中患者临床ASL数据中的应用。将其性能与其他两种去噪策略进行了比较:一种是基于主成分的方法(aCompCor);另一种是基于去除受损体积的算法(增强自动血流估计,ENABLE)。

方法

患者和MRI数据采集

根据英国国家研究伦理服务委员会批准的方案(参考:12/SC/0292和13/SC/0362),连续24小时内出现临床卒中综合征的患者,无论年龄,经知情同意或代表同意后,被招募到前瞻性观察队列研究中。在临床条件允许的情况下,每个被试在发病时、24小时、一周和一个月后进行扫描。排除标准包括存在MRI禁忌症和意识水平严重受损(美国国立卫生研究院卒中量表1a问题得分>1)。

所有扫描均使用3.0T西门子Verio扫描仪(Siemens Healthcare,Erlangen,Germany)进行。使用以下协议采集ASL数据:伪连续ASL;单次激发EPI读数;TR/TE为5386/14ms;分辨率为3.4×3.4×4.5mm;使用矩阵大小为64×64的24个时间层;在5个不同的标记后延迟时间(400、800、1200、1600、2000ms)下,标记1.8s后获得交替的对照和标记对,以循环方式变化并重复6次(总共获得60个volume);背景抑制(根据Okell等人(2013)计算WET预饱和和两个全局反转脉冲);总采集时间为4min30s。在同一扫描中自动采集具有相同读出参数但没有背景抑制或ASL标记的校准图像,从而以绝对单位量化CBF。“预扫描归一化”功能用于消除接收线圈不均匀性的影响。

在所有患者和所有时间点,本研究还采集了高分辨率T1加权结构像(磁化制备快速采集梯度回波(MPRAGE);1.8×1.8×1.0mm;FoV=228mm;TR=2040ms;TE=4.55ms;总采集时间=3min58s)。

预处理

所有图像分析均使用FMRIB软件库(FSL 6.0,www.fmrib.ox.ac.uk/fsl)中的工具进行。所有ASL数据集均使用MCFLIRT工具进行刚体配准、大脑提取(使用BET)和对照标记减影进行运动校正。使用FMRIB的自动分割工具(FAST)对结构T1加权图像进行组织分割,定义灰质部分体积估计,并将其配准到灌注图像空间。除非另有规定,否则使用部分体积估计(PVE)阈值≥70%生成灰质掩膜。使用FLIRT工具的BBR(基于边界的配准)选项进行灌注图像和结构图像之间的配准,这也允许同时使用单独采集的场图进行失真校正。使用FNIRT工具进行结构和标准空间(MNI152-2mm标准脑)之间的配准。

基于ICA的去噪

使用MELODIC工具(多元探索性线性优化分解为独立成分)对每个经过对照标记减法(ASL-sub)的4D ASL数据集进行单被试空间独立成分分解和自动维数估计。

手动独立成分分类和伪影成分回归

由两名独立评分员按照标准化程序手动对独立成分(IC)进行分类。当至少存在以下两种特征时,认为成分最可能代表信号(图1):

①空间分布图与灌注信号(即灰质)的预期位置一致。

②时间进程与整个采集过程中标记后延迟的变化一致。

③功率谱中的大部分信号对应于频率(每次扫描的周期)的重复次数或其倍数。

图1.代表性的信号成分。

如果一个成分没有或只有其中一个特征,则将其标记为噪声(图2),并使用非侵入式方法从数据中回归出来,从而仅去除与伪影相关的唯一方差。若两名独立评分员的分类结果存在分歧,则通过第三方评估人员来解决。

图2.代表性的噪声成分。

自动独立成分分类和伪影成分回归

使用FMRIB基于ICA的X-noiseifier(FIX)定制版本获得成分的自动分类和回归。FIX为每个成分提取多个空间和时间特征,每个特征描述数据的不同方面。这些数据被输入多级分类器。使用手动分类的训练数据集进行训练后,FIX就可以自动分类新的数据集。将一个阈值应用于FIX输出,以确定任何给定成分的二分类。改变阈值会改变真阳性率(TPR)和真阴性率(TNR)之间的平衡。在本研究中,最佳阈值被定义为在保持TPR>90%的情况下获得最高TNR的阈值。

为了优化用于ASL数据的FIX,对其进行了定制修改,以将那些在与特定ASL序列PLD周期频率(每次扫描6个周期)匹配的频率中具有更高功率的IC识别为信号。此外,FIX自动将相应标记图像和对照图像之间的平均运动参数作为每个减影图像的运动参数。这是必需的,因为在标记对照减影之前执行了运动校正,同时对减影数据执行ICA。

手动分类期间生成的标签用于创建所需的训练数据集。在对某一特定被试的ASL数据进行去噪时,将同一被试的所有标签都从训练集中剔除(留一法)。如上所述,使用非侵入式方法自动从数据中回归出成分。

用于比较的其他去噪方法

aCompCor

aCompCor是一种基于主成分分析(PCA)的方法,旨在降低基于BOLD和ASL的fMRI中的噪声。显著主成分来源于主要由白质和脑脊液组成的噪声感兴趣区域(ROI)。然后,将这些成分作为干扰参数包含在BOLD和基于灌注fMRI时间序列数据的一般线性模型中。根据用户指南说明,在上述预处理步骤后,将aCompCor(可在https://nipype.readthedocs.io/en/latest/api/generated/nipype.algorithms.confounds.html上获取)应用于本研究中使用的数据。

增强自动血流估计(ENABLE)

ENABLE是一种多参数自动算法,用于识别和去除多个标记后延迟(PLD)ASL中质量较差的差值图像,以提高信噪比(SNR)。ENABLE同时实施的质量标准是:时域对比度噪声比(tCNR),定义为灰质中4D ASL减影数据集(ASL-sub)的时间均值除以非脑体素中ASL-sub的标准差;ASL-sub体素在灰质中的比例显著大于零;变异系数(CoV,定义为ASL-sub空间标准差除以其在灰质中的空间均值);时域SNR(tSNR,定义为ASL-sub的空间均值除以其在灰质中的标准差)。根据用户指南说明,在上述预处理步骤后,将ENABLE(可在https://asl-docs.readthedocs.io/en/latest/index.html上获取)应用于本研究中使用的数据。

去噪效果评估

对ASL-sub方差的影响:为了检验校正对ASL-sub(体素变量)的影响,计算每一次扫描的%ΔSTDmap。%ΔSTDmap被定义为:

%ΔSTDmap=(STD(ASL-suboriginal)-STD(ASL-subconnected))/STD(ASL-suboriginal)×100

其中STD是每个体素在4D ASL减影数据集体积上的标准差。然后将%ΔSTD图配准到MNI152-2mm标准脑(使用将灌注数据配准到MNI252-2mm标准脑获得的非线性变换矩阵),并进行平均以生成强度图。本研究还对ΔSTD图进行了阈值化(25%)、二值化和平均,以生成一个概率图,该概率图将突出显示ASL-sub方差在被试中更频繁减少的那些区域。

对灌注分析的影响:使用空间正则化贝叶斯推断方法(BASIL)估计去噪前后的灰质CBF、ATT及其各自的会话内方差,该方法在每个体素上产生CBF及其相关方差的估计值。采用重复测量方差分析比较不同去噪策略下灰质的平均CBF和平均ATT及其各自的会话内方差。此外,使用不同的灰质PVE阈值(50、70和90),计算基于ICA去噪前后的平均CBF及其会话内方差,以探索在部分容积效应越来越小的区域中的去噪效果。BASIL生成的CBF拟合z统计量被用作模型参数拟合优度的标记。使用重复测量方差分析进行多重比较,比较不同去噪策略下z值<2(拟合值的置信度约<5%)的灰质体素数量。

对SNR估计的影响:定义SNR是为了允许使用ENABLE将结果与之前的工作进行直接比较。通过将灰质CBF(或ATT)值除以估计的标准差(体素)来估计每个数据集的CBF-SNR和ATT-SNR。采用重复测量方差分析比较不同去噪策略下的SNR估计值。

对可重复性的影响:为了了解去噪对CBF测量重复性的影响,将采集的每个session ASL数据集分为多个epoch,包括去噪前后,每个标记后延迟重复一次。估计每个epoch的灰质CBF。使用这些估计值的变异系数(定义为标准差除以平均值;变异系数越低,可重复性越高)评估重复性。采用重复测量方差分析比较不同去噪策略的结果。

评估不同重复次数的效果

在手动ICA去噪前后,对采集的每个ASL数据集生成epoch。逐步去除不断增加的重复次数,以了解获得的重复次数的变化如何影响SNR。然后估计每个epoch的CBF-SNR,并使用重复测量方差分析进行多重比较。

统计分析软件

所有统计分析均使用Prism 8(GraphPad,California,USA)进行。

结果

ICs分类和伪影成分回归

MEODIC估计的单个被试ICs的平均数量为19(范围7-23)。手动分类为信号的ICs平均数量为7(范围3-14;评分者间的一致率为92%)。FIX分类为信号的ICs平均数量为7(范围2-16)。

ENABLE

每个患者扫描被归类为较差并随后从分析中删除的平均volume数为1.7(范围0-7)。

去噪效果评估

校正对ASL-sub方差的影响:在基于ICA的去噪后,%ΔSTD的个体平均图显示大脑边缘和脑室周围区域发生了更频繁和明显的变化,ASL-sub方差平均下降了30-35%(图3,右侧)。当使用aCompCor或ENABLE时,变化是类似的,但不太明显(图3,中间和左侧)。

图3.去噪后ASL-sub方差的空间变化模式。

对灌注分析的影响:基于ICA的去噪导致灌注分析的变化最大。与原始数据和使用其他方法去噪的数据相比,平均CBF显著较高,而平均CBF的会话内方差较低。当比较手动和自动IC分类的效果时,两种指标比较差异均无统计学显著性。使用aCompCor导致平均CBF及其会话内方差的变化较小。使用ENABLE仅导致平均CBF增加(图4,表1)。

图4.对CBF的影响。

表1.多重比较分析结果。

使用基于ICA的去噪和aCompCor导致ATT和ATT会话内方差具有类似的变化。当比较手动和自动IC分类的效果时,两种指标比较差异均无统计学显著性。使用ENABLE仅导致ATT会话内方差增加(图5,表2)。

图5.对ATT的影响。

表2.多重比较分析结果。

在所有测试的灰质PVE阈值中,基于ICA去噪后的平均CBF及其会话内方差的变化都是显著的。所有去噪策略均显著减少了拟合不良体素的数量(z值<2)。与原始数据相比,基于ICA的去噪效果更明显(减少了14%,p<0.001)。基于ICA的手动和自动去噪之间无明显差异。aCompCor和ENABLE的效果相对较小,但仍然显著(aCompCor:减少了10%,p<0.001;ENABLE:减少了8%,p<0.05)。

对SNR估计的影响:所有去噪策略均显著提高了CBF-SNR和ATT-SNR。与原始数据相比,基于ICA去噪后的SNR增幅最大(CBF-SNR增加40%,p<0.001,图4)。基于ICA的手动和自动去噪之间没有显著差异(图4和5)。aCompCor的效果相对较小(CBF-SNR增加20%,p<0.001),而ENABLE的使用增幅最小(CBF-SNR增加4%,p<0.001)。

校正对可重复性的影响:与原始数据相比,使用aCompCor或ENABLE后,可重复性不变。然而,基于ICA的去噪产生了显著更高的可重复性(p<0.05)。基于ICA的手动和自动去噪在重复性方面无明显差异(图6)。

图6.对可重复性的影响。

评估不同重复次数的效果

减少原始ASL数据中的重复次数导致CBF-SNR下降,范围从4%(去除一次重复,p<0.001)到21%(去除四次重复,p<0.001)。从手动ICA去噪的ASL数据中去除重复时,也观察到类似的效果。然而,仅包含3、4或5次重复的去噪数据中计算出的CBF-SNR大于包含所有重复的原始数据的CBF-SNR(p<0.001;图7)。

图7.不同重复次数的影响。

结论

这项研究表明,使用基于ICA的去噪方法可以降低CBF和ATT方差,增加SNR,并提高可重复性。这些变化超出了使用主成分分析(aCompCor)和去除受损图像体积(ENABLE)方法的影响。自动ICA去噪与手动去噪在很多指标上取得了几乎相同的结果。有趣的是,采用基于ICA的去噪后,仅使用50%的数据就可以获得比完整的原始数据更高的信噪比,从而有可能减少急性脑卒中患者的采集时间。总之,ICA可用于分离ASL数据中的信号和噪声。去除伪影成分可以在不增加采集时间的情况下提高数据质量。事实上,这项研究表明,在不影响数据质量的情况下,采集时间可以减少50%,这值得进一步研究。独立成分分类和回归可以按照简单的标准手动进行,也可以通过使用为ASL定制的FIX自动执行。

原文:Carone, D. , Harston, G. , Garrard, J. , Angeli, F. D. , & Kennedy, J. . (2019). Ica-based denoising for asl perfusion imaging. NeuroImage, 200.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值