用于原发性进行性失语症分类的可解释性机器学习影像组学模型

摘要

背景:原发性进行性失语症(PPA)是一种以语言障碍为特征的神经退行性疾病。两种主要的临床亚型分别为语义型(svPPA)和非流利型失语(nfvPPA)。对PPA患者的诊断和分类是一个复杂的挑战,需要整合多模态信息,包括临床、生物学和放射学特征。结构神经影像学在辅助PPA鉴别诊断和构建诊断支持系统方面起着至关重要的作用。

方法:本研究对56例PPA患者(31例svPPA和25例nfvPPA)以及53名年龄性别匹配的对照组进行了T1加权图像的白质纹理分析。结合临床/影像组学测量训练了一种基于树的算法,并使用Shapley加法解释(SHAP)模型来提取区分svPPA和nfvPPA患者与对照组以及彼此之间更有效的指标。

结果:影像组学集成分类模型在区分svPPA患者和对照组方面的准确率为95%,区分svPPA和nfvPPA的准确率为93.7%。在区分nfvPPA患者和对照组方面的准确率为93.7%。此外,Shapley值显示了患者分类模型中左内嗅皮层附近的白质参与度较高。

讨论:本研究为影像组学特征在svPPA和nfvPPA患者分类中的实用性提供了新的证据,并证明了可解释的机器学习方法在提取评估PPA最具影响力特征方面的有效性。

引言

原发性进行性失语症(PPA)是一种神经退行性疾病,每10万人中约有3~4人患病。PPA是额颞叶变性(FTLD)的另一种主要形式,其临床特征是语言障碍,影响口语、写作和理解能力。PPA的两种最显著的亚型包括以言语缓慢、费力和语法错误为特征的非流利型失语(nfvPPA),以及以无法理解单词或构建句子为特征的语义型失语(svPPA)。每种亚型都表现出与潜在病理相对应的特定表型特征。SvPPA通常与TDP-43-C病理聚集物相关(75-100%的患者),通常也与FTD tau病理有关。相反,nfvPPA通常与FTD-4R tau有关。

PPA患者的诊断和分类是一项复杂的挑战,需要整合临床、生物学和影像学特征等多模态信息。关于脑成像变化,一些研究报告了语言障碍与灰质区域的变化以及与语言相关的皮层区域的白质纤维束之间的关联。此外,svPPA显示腹侧流中断,从而影响枕颞叶通路。相反,nfvPPA的特征是更多的背侧通路受损,通常会涉及顶叶-额叶区域。近年来,在脑灰质和白质区域提取的形态和扩散特征也被用于开发诊断支持系统,以辅助临床诊断和鉴别PPA患者。虽然许多研究都集中于利用灰质萎缩特征创建自动化系统,但只有少数研究人员建立了基于扩散的白质损伤分类模型。

在影像诊断领域,影像组学提出了一种新的分析方法,能够揭示图像中难以察觉的细节。它量化了感兴趣病理区域(ROIs)的纹理变化。因此,许多研究利用影像组学方法来揭示癌症等疾病中的影像生物标志物,最近还用于评估其他疾病(包括神经退行性疾病)的诊断和预后。特别是,分类模型是通过提取特定脑区的高维影像组学测量集,然后结合特征选择和机器学习算法来区分诊断类别。然而,尽管这些分类框架获得了最优性能,但每个特征对模型分类贡献的估计往往不明确,从而限制了结果的可解释性。因此,近年来,可解释性的概念受到了广泛关注,其目的是理解模型背后的推理,并以此方式评估哪些信息对性能的影响最大。

在本研究中,研究者开发了一种基于影像组学的分类方法来对PPA患者进行分类,并对研究者之前在相同人群中评估结构性白质偏侧损伤的研究进行了二次分析。特别是,从白质区域提取的一阶和二阶统计量,并结合临床信息作为输入,用于基于树的算法从健康对照中区分出svPP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值