听觉稳态刺激期间的相位-幅值耦合:方法学综述

摘要

听觉稳态响应(ASSR)是一种以可控方式探测γ频段(>30Hz)活动的有效方法。除了通过幅度和相位同步来分析ASSR外,研究者们还在探索其他测量方法。其中之一是相位-幅值耦合(PAC),它反映了低频相位和高频振幅之间的相互作用。近年来,关于听觉稳态刺激中的PAC研究越来越多,因此本文旨在对ASSR研究中的PAC方法学进行全面综述。本文将根据经验和理论PAC研究中强调的PAC分析问题来评估这些研究。结果表明,所综述的研究在方法学上存在显著差异。此外,这些研究在处理PAC方法学问题及混杂因素方面相对不足,并且对所采用方法的描述也不够详尽。综上所述,为了准确评估听觉稳态刺激过程中的相位-幅值耦合(PAC),有必要进行系统化研究,以探讨ASSR背景下PAC的具体应用和分析方法。

引言

近年来,异常大脑活动的神经生理标志物受到了广泛关注。特别是,从脑电图(EEG)或脑磁图(MEG)这两种技术所得到的测量指标引起了越来越多的兴趣。其中一种方法是听觉稳态响应(ASSR),这是一种由周期性听觉刺激引发的神经反应。通常,ASSR的特征是具有与刺激频率相对应的稳定响应频率成分(通常在γ频段,>30Hz)。ASSR范式提供了一种独特的条件,其中神经反应的确切时间、频率和位置是已知的。研究表明,ASSR具有高度的个体内稳定性,并且能反映多种神经精神疾病中γ频段同步响应的异常。此外,ASSR不仅与大脑处理听觉信息的能力有关,还有可能与个体的认知功能(如记忆、注意等)存在关联。

尽管传统的ASSR分析方法主要通过评估诱发活动的振幅/功率和/或试次间相干性来进行,但研究者们也在探索其他潜在的测量方法。其中之一是相位-幅值耦合(PAC),这是一种用于估计跨频率耦合的参数,其中高频活动的振幅受低频振荡相位的调制。研究表明,不同频段之间的这种相互作用促进了可变时空尺度上的信息传递。PAC已在多种感觉和认知任务中被观察到,包括听觉感知和认知过程。此外,精神分裂症、帕金森病和自闭症谱系障碍等精神疾病中也发现了PAC的异常。大多数研究探讨了γ频段(>30Hz)振幅与低频振荡(δ频段,<4Hz;θ频段,4-8Hz;α频段,9-13Hz;β频段,14-30Hz)相位之间的PAC。鉴于ASSR通常用于以可控方式评估γ振荡,一些研究分析了周期性听觉刺激期间的PAC,旨在研究γ活动相关的跨频率相互作用的动态。

虽然对PAC的兴趣日益增加,但目前尚未建立完善的分析流程。典型的分析过程包括以下基本步骤:1)数据滤波以获得低频和高频时间序列,2)分别从低频和高频信号中提取相位和振幅信息,3)评估低频相位与高频振幅之间的耦合。然而,不同研究在具体方法、分析参数和控制程序的选择等方面存在较大差异。此外,基于不同数学原理开发了多种PAC计算算法,包括平均向量长度调制指数(MVL-MI)、Kullback-Leibler调制指数(KL-MI)、一般线性模型调制指数(GLM-MI)等。此外,一些研究还探讨了PAC估计方法的差异,揭示了多种因素和参数对PAC值的影响。这些因素包括样本数据长度、信噪比、滤波带宽、边缘伪迹、非正弦振荡以及非平稳期等。这些混杂因素可能会对不同的PAC算法产生不同的影响,也可能导致虚假耦合。

考虑到EEG/MEG研究中PAC检测的相关问题(表1),本研究旨在回顾分析在听觉稳态刺激(ASSR)背景下进行PAC分析的研究。具体而言,本研究旨在对ASSR研究中使用的PAC分析方法进行全面综述,重点关注PAC文献中强调的方法学问题。

表1.PAC分析相关的问题。

方法

本研究在三个数据库中进行了检索——PubMed、Scopus和Web of Science。使用的关键词组合如下:(“相位幅值耦合”或“跨频率耦合”或“γ耦合”)和(“听觉咔哒声”或“听觉γ”或“γ听觉”或“40Hz听觉”或“听觉40Hz”或“听觉稳态”)。检索于2024年8月进行,共找到了32条记录(图1)。去除重复项(N=19)后,对剩余的13篇文章的标题、摘要和关键词进行了筛选,排除了1篇理论论文和1篇会议文章。随后,对剩余文章的方法部分和补充材料进行筛选,以评估其是否符合以下标准:(1)在EEG/MEG记录期间使用了γ频段的听觉稳态刺激;(2)对听觉稳态刺激期间获取的信号进行了PAC分析。有三项研究因未分析PAC或仅在基线和/或静息态记录期间分析PAC而被排除。

图1.文献检索的PRISMA流程图。

从剩余的八项研究中,提取了以下主要信息:实验设计、信号采集、分析的感兴趣区域,以及PAC分析方法,包括所选方法、分析的频率及其带宽、数据分段、分析的时间窗、替代归一化以及刺激与基线PAC的比较。提取的其他信息还包括样本特征、研究目的以及PAC分析的结果。两名研究者还对所综述的研究进行了评估,重点关注这些研究在以下方面的表现:频率带宽、数据长度、非平稳期、信噪比、非正弦振荡、边缘伪迹以及与刺激相关的PAC评估。

结果

在纳入的研究中,有四项报告了在与基线或替代PAC进行比较后,检测到对听觉周期性刺激的PAC反应。其他研究未评估与刺激相关的PAC是否存在。五项研究显示了在听觉刺激期间不同组别或治疗条件之间的PAC差异。其他研究仅在基线期间发现组别/条件之间的PAC差异,而在听觉刺激存在时未发现差异。从上述研究中提取的信息进一步根据不同的研究方法进行分组(见表2)。

表2.从综述研究中提取的关于PAC分析方法的主要信息。

实验范式

在本综述纳入的八项研究中,有七项使用了基于咔哒声的听觉刺激,这些刺激由离散的均匀间隔的咔哒声组成,只有Mancini等人(2022)使用了1000Hz的调幅音调。研究中使用的刺激频率有多种(20、30、40、60和/或80Hz),并分别在不同的block中呈现,或者仅使用40Hz或30Hz的单一频率。刺激的重复次数差异较大,范围从28次到200次(平均119.2±60.9次)不等。四项研究使用了500ms的刺激试次,而其他研究使用了更长时间的刺激,持续时间为1000ms、2000ms和3000ms。受试者在基于Oddball范式的刺激呈现期间要么主动参与聆听,要么被动聆听,或者被无声电影分散注意力。七项实验在EEG/MEG采集期间仅使用了ASSR范式;其中一项研究还包括了静息态记录。在实验过程中,六项研究通过头皮EEG采集了神经生理数据,另有一项研究使用了MEG。EEG/MEG研究的采样率范围为250Hz至1000Hz。Inaba等人(2021)在一项动物研究中使用了皮层电图(ECoG),采样率为4kHz。

PAC算法

在PAC方法方面,四项研究使用了KL-MI算法,两项研究应用了MVL-MI算法。Inaba等人(2021)使用了GLM-MI算法。最后,de la Salle等人(2024)没有具体说明所选的算法。

感兴趣区域

不同研究中分析的PAC感兴趣区域(ROI)各不相同。一些研究选择在传感器水平上分析PAC,选取了额-中央-顶叶区域的单个电极或一组电极,而Zhang等人(2023a)分析了所有用于记录的电极,但主要集中在额中央通道。有两项研究应用了源定位分析,并在双侧听觉皮层或多个皮层和皮层下区域分析了PAC。一项使用ECoG的动物研究分析了来自右侧听觉皮层和额叶皮层的ASSR。此外,虽然所有研究都分析了来自同一通道/源的低频相位与γ振幅之间的耦合关系,但有两项研究还分析了从不同ROI提取的相位与幅值信息之间的PAC。

频率窗

所有研究均计算了低频相位与低γ(30-60Hz)振幅之间的PAC,而两项研究还包括了高γ(>60Hz)频率。五项研究计算了多个相位和幅值中心频率对的PAC,并报告了这些中心频率的范围:∼1-15/∼15-50Hz、4-8/37-43Hz、4-20/12-100Hz、4-12/13-60Hz和4-8/20-90Hz。每个相位中心频率与每个幅值中心频率配对,从而形成相位幅值耦合图,该图显示了所有频率对的PAC值。在这些研究中,只有Zhang等人(2023a)指明了滤波带宽:相位为2Hz,振幅为8Hz。相反,有三项研究在单一相位和幅值中心频率对上应用了PAC,报告了中心频率(10/40Hz)或代表边带的频率范围(4-8/38-42Hz)。Jones等人(2020)使用的带宽为相位2Hz,振幅12Hz。八项研究中有七项在分段数据上应用了滤波,只有Mancini等人(2022)在分段前进行了滤波。分段时间从刺激开始前−1500ms到−250ms,以及刺激开始后+850ms到+2000ms,具体取决于刺激持续时间。

时间窗

在使用500ms持续时间刺激的研究中,要么选择整个刺激周期进行分析,要么通过分析250ms到500ms的时间间隔来排除刺激开始时的活动。Cho等人(2015)未指定具体的时间窗。当使用1000ms刺激时,Murphy等人(2020)也选择排除刺激的起始部分,并选择200ms到1000ms的时间窗。相比之下,Inaba等人(2021)仅评估了刺激起始时段(0-200ms)。Mancini等人(2022)计算了从刺激开始后0到500ms期间的PAC,尽管该研究使用的是2000ms的刺激。最后,Zhang等人(2023a)评估了2400ms时间间隔内的PAC,但排除了刺激的前400ms和后200ms。PAC在每个试次中单独计算,或者将所有试次数据合并后进行计算。在分析刺激间期和/或静息态PAC的研究中,基线活动的时间窗与刺激的持续时间相对应。

替代归一化

只有两项研究使用了替代PAC值进行归一化,并采用了不同的替代分布生成方法——一种是跨试次的数据置换,另一种是原始信号段的随机置换。在归一化过程中,通过从真实PAC值中减去替代PAC的均值并除以其标准差来计算Z分数。此外,Kirihara等人(2012)通过交换试次间的相位和幅值信息来计算替代PAC,但未进行归一化处理,而是直接使用替代分布进行统计分析。

刺激与基线/静息态的比较

只有两项研究报告了刺激与基线PAC值之间的比较。采用基于聚类的置换统计和非参数Kruskal-Wallis检验的被试内比较。尽管Cho等人(2015)报告了与刺激间期相比显著的刺激相关PAC,但未详细描述比较方法。此外,Kirihara等人(2012)比较了真实和替代PAC。

方法学风险评估

方法学风险评估结果如图2所示,图中指明了每个问题是否得到了充分解决、部分解决或者未解决/提供的信息不足。

图2.方法学风险评估结果。

讨论

本综述表明,采用PAC方法分析ASSR的文献相对较少,但这一领域的研究数量正在增加,其中八项已识别的研究中有六项是在近五年内发表的。然而,使用ASSR范式分析PAC的研究存在较大的异质性。尽管所综述的研究在样本特征和实验范式上存在一定差异,但PAC分析方法的差异尤为显著。研究表明,即使使用相同的数据,由于分析参数的不同,也可能得到不同的PAC结果。这使得对这些研究结果的比较和总结变得具有挑战性。因此,本文将重点讨论与PAC方法学相关的各个方面,特别是PAC算法、滤波带宽、分析的时间窗、替代归一化的应用、控制混杂因素的其他方法,以及与刺激相关的PAC评估。

文中介绍了三种PAC评估算法:KL-MI、MVL-MI和GLM-MI。这些方法在估计相位-幅值相互作用的方式上存在显著差异。使用KL-MI方法时,通过计算不同相位区间内的平均归一化幅值得到幅相分布。然后,通过Kullback-Leibler距离将幅相分布与零均匀分布进行比较来估计调制指数(MI)。MVL-MI方法将低频相位和高频振幅信息结合形成复值信号,其中每个向量代表一个时间点。MI通过估计平均向量长度获得,该长度反映了向量分布的均匀性。GLM-MI方法基于低频相位和高频振幅之间的相关性。在该方法中,高频相位通过多元回归建模,其中相位信息作为预测因子。MI随后表示为由相位解释的振幅方差。由于各种算法都有其优势和局限性,所以PAC分析算法的选择仍然是一个有争议的问题。例如,Hülsemann等人(2019)分析了不同的PAC估计方法,并表明对于时间窗较短且噪声较多的数据,KL-MI是首选,因为它相比其他常用方法受混杂因素的影响最小。考虑到ASSR范式通常使用短时刺激,根据Hülsemann等人(2019)的研究结果,KL-MI方法可能被认为是最佳选择。

许多研究强调了在滤波相位频率和振幅频率时选择频率带宽的重要性。通常,对于相位频率,会使用较窄的带宽(例如2Hz),以使滤波后的信号表现为平滑的正弦波。相反,对于振幅频率,一般使用较宽的带宽。建议振幅频率应包括相位频率的中心频率及其附近的频率范围。如果不满足此条件,则可能无法检测到PAC。在本综述所纳入的研究中,有一半未指明滤波带宽。在剩余的研究中,有两项研究选择了较窄带宽的振幅频率,这可能会阻碍PAC的检测,另有两项研究选择了通常推荐的较宽带宽。

数据长度对于PAC分析的重要性已被广泛认可,建议使用较长的时间间隔进行PAC分析,以获得稳健的估计。特别是,这一点对于低频振荡(如δ或θ频段)尤为重要,因为较长的数据段将包含更多的周期,从而能够排除因噪声导致的虚假耦合的可能性。当分析那些使用200ms和250ms时间窗的研究结果时,短数据长度的问题可能尤为突出。例如,已有研究表明,对于小于400ms的数据长度,即使模拟数据中存在PAC,也可能无法检测到。

与时间窗选择相关的另一个重要因素是非平稳周期的存在。这些周期的特点是因相位重置导致的不同频段之间存在相关活动,可能会被错误地解释为PAC。因此,建议排除刺激起始时的活动,因为在这一时期存在感觉诱发电位。此外,有研究表明,早期潜伏期和与锁相相关的晚期潜伏期ASSR反映了不同的功能方面,这表明这些ASSR成分应分别进行评估。一些研究还包括了刺激起始时的活动或仅分析了起始阶段的活动,这可能会导致PAC被高估。

为了至少部分控制PAC分析中的混杂因素,通常推荐使用替代归一化步骤。创建替代数据的目的是通过对原始数据进行改变以消除相位与振幅之间的关系。该过程会重复多次以形成PAC值的零分布。随后,替代分布可用于归一化真实的PAC,这有助于避免虚假PAC并突出真实的耦合。然而,所综述的研究中只有两项研究使用了替代归一化,而其他研究选择分析未归一化的PAC数据。因此,这些研究不能排除由于各种混杂因素所导致的假阳性PAC。

此外,还应考虑其他策略来控制可能的混杂因素。例如,可以通过计算低频振荡活动的上升时间与衰减时间的比率来评估非正弦振荡的存在。在这些研究中,只有Murphy等人(2020)进行了这一操作。此外,进行PAC分析的研究可以采取相应的措施来避免边缘伪迹,这些伪迹可能被错误地识别为PAC。因此,建议在分段前对连续数据进行滤波,和/或排除分段边缘。在本文所综述的研究中,只有一项研究在分段前对连续数据进行了滤波。通常,通过在滤波前对试次进行零填充和/或在整个分析期间不包含滤波后分段的两端数据,以避免边缘伪迹对结果的干扰。然而,当将多个数据段连接在一起进行PAC分析时,分段边界处的突变过渡可能类似于边缘伪迹,也可能导致虚假的PAC。

在使用事件相关数据进行PAC分析时,主要是比较感觉或认知刺激期间的PAC与刺激间期之间的差异,这有助于评估是否存在显著的刺激相关耦合。在ASSR背景下,有证据表明,刺激间期的γ活动具有生理相关性,并表现出与ASSR本身不同的特性,这使得刺激期与刺激间期之间的比较特别有意义。尽管所有综述的研究都进行了组间或条件间的PAC比较,但只有三项研究比较了刺激期与基线期。值得注意的是,这些比较方法有所不同:Murphy等人(2020)使用非参数聚类置换检验在源水平上比较了由多个频率对创建的相位幅值耦合图,而Zhang等人(2023a)则先验选择了感兴趣的频率和电极,计算了它们的PAC均值,并通过非参数统计方法比较了PAC均值。本文认为前者的方法可能更合适。执行基于聚类的比较可以稳健地估计低频相位与特定刺激相关的γ频率振幅之间是否存在耦合,而无需事先假设效应可能发生的位置。

考虑到现有研究中的问题以及关于刺激相关PAC证据的不足,目前仍无法确定在听觉稳态刺激期间是否存在显著的PAC。通常,PAC与高阶认知处理(例如听觉认知)有关。相反,ASSR是通过简单的节律性听觉刺激(如咔哒声或调幅正弦音)诱发的,这些刺激能够在预设频率下同步γ活动。因此,ASSR的生成可能不需要通过γ振荡与内源性低频活动之间的相互作用来实现复杂的信息处理机制。然而,目前尚不能排除在听觉稳态刺激期间存在PAC的可能性。有三项研究报告了显著的刺激相关PAC,并且报告了不同被试组或实验条件之间的差异。然而,考虑到一些研究中的方法描述不完整以及存在上述方法学问题(例如不适当的频率带宽、较短的时间窗、包含非平稳期,以及对潜在混杂因素控制不足等),我们应谨慎解读这些研究结果。因此,本文认为在ASSR背景下开展系统的PAC研究是必要的。此类研究应更好地解决PAC分析中的问题,并且可以考虑在同一数据集上使用多种PAC算法和参数组合。最后,本文建议未来的研究应提供详细的PAC分析描述,并基于充分的理论依据进行解释,以提高研究的可重复性和更准确地评估所使用的方法。

参考文献:Mockevičius, A. & Griškova-Bulanova, I. (2025). Phase-amplitude coupling during auditory steady-state stimulation: a methodological review. Reviews in the Neurosciences. https://doi.org/10.1515/revneuro-2024-0165

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值