脑电信号特征提取方法与应用

前言

脑电图(EEG)信号在理解与脑功能和脑相关疾病的电活动方面发挥着重要作用。典型的脑电信号分析流程如下:(1)数据采集;(2)数据预处理;(3)特征提取;(4)特征选择;(5)模型训练与分类;(6)性能评估。当信号分析应用于EEG时,由于应用数字信号处理(DSP)和机器学习(ML)方法通常可以识别整个身体的状态以及大脑状态,因此特别有意义。

Carlo Matteucci和Emil Du Bois-Reymond是最先建立神经生理学的人,也是最先记录和显示大脑活动的人。后来,Hans Berger发现了大脑中的alpha波活动,他是19世纪70年代第一个使用头皮电极以电信号的形式记录大脑活动的人。Berger最终被认为是发明和测量EEG信号的人。Kornmüller关注多通道记录及其重要性,并通过使用更多的电极来扩大脑区覆盖范围。EEG分析自发现以来,为各种神经系统疾病的诊断和治疗以及中枢神经系统整体健康状况的研究带来了重大进展。

用于信号采集的EEG系统由电极、差分放大器、滤波器和寄存器组成。常用的EEG电极放置方法为10-20标准导联(见图1)。对EEG信号进行采样、量化和编码,将其转换为数字形式。由于EEG信号的有效带宽为~100Hz,因此对于大多数应用来说,200Hz的最小频率(以满足Nyquist标准)足以采集EEG信号。

图1.10-20系统电极放置。

脑电分析与应用的挑战

脑电信号分析的应用比较广泛:从疾病诊断到脑机接口(BCIs)。癫痫是脑电信号分析中研究较多的一种疾病。癫痫的特点是频繁发作,被归类为慢性神经系统疾病。EEG可用于识别癫痫发作以及癫痫的诊断,但这一过程耗时长且需要手动操作。由于手动操作存在主观性,因此可能导致诊断存在差异。这同时也促进了技术领域的创新,以开发癫痫检测的自动化方法。

脑电信号分析也被应用于脑机接口领域,这是一个快速发展的研究领域,也是一个有趣的领域,因为它为外部世界和人类大脑之间的沟通提供了桥梁。目前已被应用于辅助设备,用于恢复患者的运动,以及再训练患者以恢复运动功能。脑机接口系统的作用是分析从脑电图传入的脑电波,并将信号转换为适当的动作。然而,该领域在可用性、训练、信息传输率以及技术方面仍然存在许多挑战。

EEG的其他应用包括但不限于运动想象分类、情绪分类、心理诊断和睡眠状态分类。由于这些应用在数据采集过程中需要采集大量的EEG通道,因此需要通道冗余。已经开发了一些算法来辅助脑电信号的通道选择。通道选择有助于降低计算复杂度,减少冗余通道的过拟合以提高性能,并减少某些应用程序的设置时间。通道选择技术包括:(1)使用评估标准“过滤”通道的过滤法;(2)使用分类算法的包装法;(3)基于分类器学习过程中生成的标准来选择通道的嵌入法;以及(4)结合过滤和包装技术的混合方法。

脑电特征提取方法的发展

特征提取是信号预处理后的下一步,是生物医学信号分析的重要步骤。使用大数据已经变得越来越普遍,特别是在医疗领域,因为大数据需要多个小时的采集以及多个通道,就像EEG信号采集一样。因此,特征提取的基本目标之一是降维和数据压缩。从本质上讲,这将允许人们用更小的特征子集来表示他们的数据。这促进了机器学习(ML)和人工智能(AI)算法在分类和诊断应用中的高效使用。注意,并非所有特征都适用于给定的应用程序;理论上,“有用的”特征应该具有准确表示潜在信号的能力。

此外,需要注意的是,脑电信号携带的特性会使特征提取和信号分析过程复杂化。脑电信号具有:(a)非平稳,(b)非线性,(c)非高斯,和(d)非短形式。为了实现稳健的端到端管道,需要在特征提取过程中对这些特性加以考虑。

特征提取后进行特征选择。不同的特征组合会对管道产生不同的结果;它们可能会对以下机器学习(ML)模型的性能产生消极或积极影响。例如,如果选择不合适/低效的特征来训练模型,总体上不能很好地表示潜在信号,那么模型的性能就会下降。一个好的经验法则是选择与应用程序相关的特征来表示信号,而不是一般特征,这将确保特征能够捕获感兴趣的模式和行为。

总之,特征提取和特征选择节省了硬件和软件资源、计算时间,并降低了复杂性,所有这些都可应用于ML和基于AI的连接医疗和远程医疗领域。本文回顾了近年来应用于脑电信号的常见特征提取方法(见图2)。接下来将按一维特征提取方法和多维特征提取方法进行阐述。

图2.基本特征提取和机器学习管道展示了生物医学信号特征提取技术的发展历程。

(一)一维特征提取技术

①时域。

②频域/谱域。

③分解域。

(二)多维特征提取技术

①时频联合域。

②空间域。

特征对机器学习的重要性

在进行特征提取和特征选择之后,将特征输入到机器学习(ML)模型中。这些ML模型是为特定应用定制的,例如用于分类(疾病诊断)。ML是整个AI领域的一个子集,可以帮助优化所选择的特征。这是由开发人员在确定哪些特征对模型有积极/消极影响时完成的,并使用这些信息来优化整个管道。

在选择合适的ML算法来实现时,必须考虑所选择的应用程序/问题。这是因为对于特定的应用程序,某些模型的表现比其他模型更好。人们还必须考虑现有ML模型固有的优缺点,例如,有些模型的计算量更大,这对于实时设计来说可能不可行。在选择ML算法时,有一些一般标准需要考虑:(1)生物信号的类型,(2)特征矩阵的大小,和(3)标记数据的可用性等等。请参考图2了解简单的端到端特征提取ML管道。

开发人员可以选择有监督或无监督的ML模型。通常在医疗应用中,会选择有监督的模型。监督学习是指领域专家提供的标记数据的可用性;标记的数据作为训练过程中模型学习的基础。

无监督学习是指缺乏专家标记的数据,取而代之的是算法研究数据以找到模式来区分不同类别。然而,这种类型的学习通常不用于生物医学信号数据。这是因为生物医学信号在短时段中可以得到更好的分析;在监督学习中,可以将标签应用于单个片段。然而,在无监督学习中,ML预测标签将应用于全程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值