“精神内耗”的神经影像学证据:担忧和反刍会引发相似的神经表征

摘要

重复性消极思维(RNT)包括面向未来的担忧和面向过去的反刍,两者在认知和情感上具有相似的特征。这些不同但相关的过程在大多程度上会激活重叠的神经结构尚不确定,因为大多数神经科学研究只单独研究担忧或反刍。为了解决这个问题,本研究使用fMRI测量了39名具有不同RNT特质评分的年轻人的担忧和反刍思维,并同步记录了情绪评分和心率,作为唤醒生理指标。多元表征相似性分析显示,分布在默认模式网络、突显网络和额顶叶控制网络中的多个区域在担忧和反刍思维的编码方式上存在相似。此外,担忧和反刍之间的心率变化并无显著差异。在支持自我参照加工、记忆、突显检测和认知控制的网络中捕捉担忧和反刍思维之间共享的神经特征,为支持RNT的认知和临床模型提供了新的实证证据。

引言

重复性消极思维(RNT)是指对自我、环境和经历中消极方面的持续性思考。从概念上讲,RNT是一个潜在的构念,反映了特定类型思维(如担忧和反刍)之间的共享认知过程。担忧是对未来灾难无法控制和夸大的负性思维,传统上与焦虑症有关;而反刍则是沉湎于过去的问题和失败,传统上与抑郁症有关。临床文献中对担忧和反刍思维的区分,也延伸到了神经科学领域,然而很少有研究检验担忧和反刍思维过程的神经表征是否存在重叠。测试担忧和反刍在神经生物学上的重叠,将有助于了解它们在RNT中的认知共享程度。此外,确定RNT的特定大脑回路对于改善跨诊断类别心理困扰的病因和治疗模式也非常重要。

关于担忧和反刍思维的不同研究线索涉及三个功能性大脑网络:默认模式网络、外侧额顶网络和突显网络。这些网络的功能与担忧和反刍思维之间的共同特征相吻合,表明它们可能激活了相似的神经结构。例如,在默认模式网络(或内侧额顶叶网络)中,后扣带皮层(PCC)和内侧前额叶皮层(PFC)的激活,可能与担忧和反刍中涉及的自我相关思维和自传体记忆加工有关,这些过程是RNT的典型特征。人在面临忧虑和反刍时,外侧额顶叶网络(特别是背外侧前额叶皮层(PFC))的激活表明,在RNT过程中难以有效地抑制和转移负性思维。最后,突显网络(或中扣带-岛叶网络)区域,包括前扣带皮层(ACC)和岛叶在担忧和反刍中的激活,可能表明大脑对负面内源性刺激(即思维和记忆)的敏感度增加,导致个体在RNT过程中感到被“困住”而难以摆脱。

尽管有证据表明担忧和反刍思维在概念上存在相似性,但很少有研究探讨它们在同一样本中的神经相似性程度和空间模式。一项fMRI研究发现,担忧和反刍状态与中性情境相比,在多个大脑区域(包括突显网络、默认模式网络和外侧额顶叶网络)的激活模式上存在相似性,同时也保留了一些独特的激活特征。然而,这项研究的局限性在于试次数量较少,且缺乏同步的生理和主观情绪体验标记。此外,以往的研究也受限于传统的单变量分析,即通过对体素和刺激进行聚合来量化大脑区域的信号强度。这种方法不能捕捉到跨体素活动模式编码的关于刺激特征的细微信息。因此,要确定大脑在多大程度上反映了担忧和反刍的共同特征,关键是要在同一样本中检验由多个个体的担忧和反刍所引发的多体素激活模式。

本研究通过使用多体素分析方法,探讨了担忧和反刍思维引发的神经表征重叠情况。将担忧和反刍的神经表征重叠概念化为RNT的共享过程,并使用多元表征相似性分析(RSA)对这种重叠进行了量化。与单变量的体素建模方法不同,RSA通过比较一组体素的激活模式,能够捕捉到不同刺激的独特信息。利用RSA计算担忧和反刍期间神经模式的相似性,以确定两者之间的表征距离。更高的相似性或较短的表征距离表明,担忧和反刍之间可能共享某些相同神经机制或加工过程。本研究使用探照灯程序来识别个体的担忧和反刍表征最为相似的区域,同时与中性状态的激活模式进行对比。与之前的研究一致,本研究假设担忧和反刍会在默认网络、额顶网络和突显网络中表现出相似的活动模式。

方法

参与者特征

本研究共招募了152名迈阿密大学的本科生参与者。一般而言,在大学生群体中,重复性消极思维(RNT)特征的分布可能呈正偏态,意味着高RNT特征的个体较少。由于本研究希望确保招募的参与者具有足够的反刍思维,因此会优先招募在预学期评估中报告有较高RNT水平的学生。本研究计算了大约600名心理学学生的持续性思维量表(PTQ)的平均得分(M=23, SD=12.41)。向那些得分高于平均水平的学生发送邀请,并优先安排他们参与实验(图1)。

图1.担忧与反刍范式。

所有参与者在学期开始时(时间点1)完成了一系列问卷,测量了担忧、反刍思维和其他心理健康症状,之后这152名参与者中有120人在学期末(时间点2)进行了重测。在时间点2,参与者还完成了一份关于担忧和反刍思维的调查量表。本研究重点关注39名参与者,这些参与者不仅完成了时间点2的测量,而且符合fMRI研究的纳入标准。所有39名参与者在第二次测量后一周左右完成了fMRI扫描。为了检验RSA相对于一般负面情绪的特异性,23名参与者还完成了一项IAPS观看任务;由于扫描期间的时间限制,部分参与者未能完成任务(39名被扫描的参与者中,有10名未完成IAPS任务,6名仅完成了2个block中的1个)。人口统计信息和自我报告量表的描述性统计数据如表1所示。

表1.人口统计信息和自我报告量表的描述性统计数据。

fMRI数据预处理

使用fMRIPrep 1.4.1对数据进行预处理,fMRIPrep 1.4.1是基于Nipype 1.2.0的fMRI数据标准化预处理管道。fMRIPrep鼓励用户按照一定的格式来描述分析过程,并且将报告内容纳入研究的补充材料部分。

在fMRI扫描期间同时采集心理生理学数据

在每次fMRI任务运行期间,采集了包括心率在内的心理生理学数据。这些数据使用Biopac MP160数据采集系统进行采集。心率通过PPG100C-MRI光电容积脉搏波放大器捕捉,该设备从参与者左手无名指指尖的传感器处记录数据,采样率为1000Hz。这些数据通过BioPac AcqKnowledge程序(版本4.3.1)转换后,在Mindware 3.2中进行分析。心率时间序列被划分为与每个fMRI试次对齐的34s时间段。峰值被自动标记,由研究助理手动检查,并由研究者进行二次检查。

行为和生理数据分析

为了验证参与者所写的担忧和反刍思维陈述是否具有可区分性,本研究测试了大型语言模型是否能够成功地对参与者的陈述进行分类。简而言之,本研究使用了Mistral-7B-Instruct-v0.2模型(https://mistral.ai/),并将参与者所收到的具体指令以及参与者的陈述(N=2078)输入该模型进行分析。重点关注模型的精度,即模型将某个陈述分类为担忧语句的比例。然后,检验担忧和反刍思维生成调查的聚合效度。此外,本研究还进行了回归分析,以确认在fMRI扫描期间的担忧和反刍思维陈述的评分比中性陈述更加负面和强烈。最后,通过评估fMRI期间心率与强度评分之间的关系来检验担忧和反刍思维是否表现出相似或独特的生理特征。

fMRI数据分析

本研究的主要目标是通过测试人们在进行反刍思维或担忧时的大脑活动重叠程度,来识别反刍思维和担忧的神经基础。首先对每个担忧、反刍和中性试次进行标准的单变量GLM分析,以生成输入到多元探照灯RSA的信号。将预处理后的数据输入到AFNI的3dDeconvolve函数中,每个试次单独建模,并且加入了6个头部运动参数。每个试次的全脑β图按试次类型(担忧、反刍、中性)进行分组,然后使用RSA进行进一步分析。

鉴于传统的单变量GLM应用非常广泛,本研究还进行了两项独立于RSA的单变量分析,这些分析结果详见补充材料。首先,本研究计算了担忧+反刍与中性条件的对比。其次,为了确定哪些区域的平均活动与RNT共享的情绪强度方面相关,本研究根据参与者的情绪强度评分对每个试次进行了振幅调制分析。尽管这些分析并非本研究假设的核心内容,但它们作为补充分析,有助于与现有文献的整合。

主要RSA分析。本研究通过取1减去体素活动图之间的相关性来计算每对试次之间的表征距离。所有可能的担忧、反刍和中性试次对之间的距离或不相似性值被输入到一个表征相异性矩阵(RDM;图2a)中。为了进行探照灯RSA分析,本研究构建了一个模型表示RDM,该模型反映了本研究假设,即反刍和担忧共享共同的神经机制,因此它们的活动表现会非常相似(即它们之间的相异度或距离为0),并且与中性条件有显著不同(图2b)。在整个大脑范围内使用9mm半径的球形探照灯,以识别观察到的RDM与模型RDM显著匹配的体素簇。使用单侧符号秩检验来评估模型RDM与观察RDM之间的相关性,检验得到的p值表示中心体素的统计显著性。重复这个过程,直到获得全脑的p值图,并使用错误发现率(FDR;α=0.05)进行多重比较校正。

图2.RSA及fMRI任务中的探照灯程序概述。

为了检验上述分析结果是否可能受到中性陈述等混杂效应的影响,本研究进行了一个额外的探照灯分析,该分析仅包括担忧和反刍试次。与主要分析不同,该模型的RDM定义为担忧和反刍试次之间神经活动模式的最大差异。这种不考虑中性陈述的直接比较,使我们能够确定它们之间的显著差异是否可能被中性陈述的潜在干扰因素所掩盖。

使用标准化情感图片进行特异性分析。为了检验RSA效应是否与一般的负面情绪相关,本研究进行了额外的分析,测试了区分担忧和反刍与中性提示的神经结构是否与区分标准化的、视觉的、非自传性的负性刺激(如IAPS图像)的神经结构相似。通过对负面和中性刺激进行RSA探照灯分析,检查这些刺激是否会受到情绪效价的影响。该分析仅限于23名完成了IAPS范式两轮的参与者,以确保每个参与者的RDM大小相同,并与模型RDM一致。使用相同的GLM和RSA参数,但采用了一个新的模型RDM,该模型将负性和中性图片试次视为完全不同的条件。随后,生成发的聚类反映了能够区分负性与中性图片的体素。对统计图进行FDR校正以确定统计显著性。通过将IAPS图与担忧和反刍RSA图叠加进行可视化检查,以确定它们之间的相似性。

结果

首先通过一个大型语言模型区分生成的担忧和反刍语句来验证本研究中的担忧和反刍调查问卷。研究发现,模型在将参与者的陈述正确分类为担忧或反刍时,准确率为93%,这表明错误分类的情况非常少见。模型不仅提供了每个陈述所属的类别(担忧或反刍),还提供了为什么这个陈述符合担忧或反刍定义的解释。

本研究进一步验证了调查问卷,探索了参与者对担忧和反刍陈述的评分在评分类型(频率或强度)、陈述类型(担忧或反刍)、话题相关性(即个人相关性),以及与反刍-负性思维(RNT)特质分数关系上的变化情况。话题相关性的主效应(p<0.001)表明,参与者对最具个人相关性的话题(如朋友)有关的陈述评分更高,表现为更强烈和更频繁的担忧和反刍(图3A)。此外,陈述类型的主效应表明,担忧陈述的频率和强度评分高于反刍陈述(p<0.001)。最后,特质RNT的显著效应(p<0.001)表明,那些在自我报告量表中报告有较高倾向RNT的人,在本研究调查中也表现出更多和更强烈的担忧及反刍思维(图3B)。

图3.行为和生理学证据表明,担忧和反刍范式会引发负面情绪体验。

特质RNT水平较高的个体倾向于将其个人担忧评价为更频繁和更强烈(图3B,p=0.003)。此外,特质RNT与更频繁和更强烈的反刍思维相关(p=0.021)。这些结果表明,个体在日常生活中经历的特定担忧和反刍思维的频率和强度与他们在特质量表上测量的RNT水平存在对应关系。

特定的担忧和反刍陈述在成像期间诱发了情绪反应。首先,调查中的强度评分能够预测扫描过程中的情绪强度评分(个体内:p<0.001,个体间:p=0.012;图3C)。然后,本研究比较了担忧、反刍和中性陈述在情绪效价和强度上的差异。担忧(p<0.001)和反刍(p<0.001)陈述的情绪效价被评为比中性陈述更为负面(图3D)。类似地,担忧(p<0.001)和反刍(p<0.001)陈述的情绪强度被评为比中性陈述更强烈(图3D)。

本研究还检验了这些陈述是否会引发生理唤醒。层级模型分析显示,反刍(p=0.523)和担忧(p=0.177)的心率比中性试次略有增加,但这种差异未达到显著水平。然而,第二个使用连续情绪强度评分作为预测因子的模型发现,无论陈述是担忧还是反刍,情绪强度评分与心率之间存在显著相关(p=0.002;图3E)。这表明,负面情绪强度(担忧和反刍的共同特征)可能比情绪类型的分类标签更能有效预测心理生理反应。

使用探照灯方法来识别那些在担忧和反刍中激活模式相似,但在中性陈述中激活模式不同的体素簇。分析发现,与担忧和反刍相关的大脑区域主要位于默认模式网络、突显网络和外侧额顶叶网络,包括腹内侧前额叶皮层(vmPFC)、前扣带皮层(ACC)、背外侧前额叶皮层(dlPFC)、岛叶、海马、杏仁核、外侧颞叶以及皮层中线结构。经FDR校正后的体素簇图如图4所示。此外,本研究还通过探照灯RSA来识别哪些脑区在处理担忧和反刍时表现出不同的神经激活模式。分析发现在顶下小叶、外侧颞叶和背外侧前额叶皮层中存在少量激活簇。然而,经FDR校正后,这种激活不显著。

图4.通过探照灯RSA方法识别出编码担忧和反刍试次的脑区。

为了确定RNT探照灯效应的特异性,本研究还比较了负面情绪刺激与RNT效应在大脑中是否激活相似的结构。总的来说,研究结果发现,与中性试次相比,担忧和反刍试次之间的相似性不仅仅是由情绪效价所致。相反,担忧和反刍的某些共同特征(例如,自传式的、口头的、内部生成的)可能是导致大脑活动表现出特定模式(通过RSA探照灯检测到的效应)的原因。

结论

重复性消极思维(RNT)是一种高阶认知过程,理论上反映了特定类型思维(如担忧和反刍)之间的概念相似性。尽管存在这种概念上的重叠,但神经科学领域通常将担忧和反刍分开进行研究。因此,我们对它们之间神经重叠的程度知之甚少,同时也没有足够的证据表明它们在神经层面上共享同一机制。为此,本研究将一种新的担忧和反刍范式与多元RSA结合,旨在捕捉担忧和反刍之间的相似性,最终揭示RNT背后的神经生物学过程。研究提供了关键证据,支持RNT作为一个涉及中枢和外周神经系统的共同过程,跨越多种具体的担忧和反刍思维类型。担忧和反刍在与自我参照、记忆、突显检测和认知控制等大脑网络相关的表征中表现出共享特征。这些发现为理解大脑如何执行RNT提供了重要线索,有助于改善对与消极认知相关心理障碍的理解与治疗。

参考文献:Puccetti, N., Stamatis, C., Timpano, K. et al. Worry and rumination elicit similar neural representations: neuroimaging evidence for repetitive negative thinking. Cogn Affect Behav Neurosci (2024). https://doi.org/10.3758/s13415-024-01239-z

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值