图神经网络在脑电图分析中的应用:阿尔茨海默病和癫痫用例分析

摘要

脑电图(EEG)作为一种非侵入性技术被广泛用于多种脑部疾病的诊断,包括阿尔茨海默病和癫痫。近年来,疾病诊断主要依赖于人类专家对EEG的解读,但这种方法不仅需要高度专业的知识,且解读过程可能具有较强的主观性,容易受到人为误差的影响。此外,尽管近年来出现了用于解读EEG的机器学习方法,但大多数方法未能有效捕捉人脑不同区域信号之间复杂的非欧氏关系。在此背景下,图神经网络(GNNs)因其能够有效地分析不同类型图结构数据中的复杂关系而备受关注。在这里,本研究旨在应用GNNs进行基于EEG的阿尔茨海默病检测以及两种不同类型癫痫发作的区分。为此,本研究通过展示单个GNN架构在这两个用例中都能实现最先进的性能来证明GNNs的价值。通过设计空间探索和可解释性分析,本文开发了一种基于图的变换器,在阿尔茨海默病和癫痫的三分类任务中,交叉验证准确率分别达到了89%和96%以上,与神经学专家的直觉一致。本文还讨论了GNNs在EEG应用中的计算效率、可泛化性及实时处理潜力,凸显了其在分类各种神经病理中的重要价值,并为未来的研究与临床实践开辟了新的方向。

图形摘要

引言

脑电图(EEG)传统上用于研究大脑活动,并在辅助诊断多种脑部疾病以及促进脑机接口应用方面表现出巨大的潜力。EEG能够捕捉分布在患者头部多个通道上的神经元放电的时间动态,因此能够提供有关简单和复杂大脑活动的时空信息。

在EEG的不同应用中,阿尔茨海默病(AD)的诊断和癫痫发作的分析与鉴别是两个关键的临床案例,因为这两种疾病可能会导致EEG模式的改变。鉴于AD较高的发病率及其渐进性神经退行性影响,以及癫痫发作误诊后错误用药的严重后果,EEG因此在这两种情况下具有重要的临床价值。

EEG可以帮助识别由于阿尔茨海默病(AD)或认知障碍所引起的大脑连接性变化,从而在早期阶段或不同病程的患者之间进行区分。在癫痫发作的鉴别诊断中,患有心因性非癫痫性发作(PNES)的人可能会表现出与癫痫患者相同的发作事件,但在发作过程中不会出现任何癫痫的特征性脑电活动。此外,静息态EEG可用于辨别某个患者的发作是源于癫痫性还是心因性发作。

依赖人类专家解读EEG来识别疾病可能存在一些局限性,例如解读不够准确或容易出错,尤其是在处理那些病情微妙且复杂的疾病时,这种方法可能会引发问题。一方面,在阿尔茨海默病(AD)中,人们通常希望在疾病的早期阶段就能识别出来,因为此时症状通常表现为轻微的认知障碍。另一方面,关于癫痫性发作与心因性非癫痫性发作之间的区分在文献中的研究较少,而且这种区分也可能不容易识别。

因此,近年来已应用机器学习方法,旨在从EEG中提取特定模式,识别出人类专家可能难以发现的特征,从而为这些疾病提供稳健且可靠的诊断。特别是,许多研究采用了支持向量机(SVM)、多层感知器(MLP)、长短期记忆(LSTM)或卷积神经网络(CNN)等技术,这些技术不仅应用于AD诊断或癫痫发作识别,而且还应用于运动想象和开发更好的脑机接口。尽管已有研究取得了一些成果,但有人认为这些方法无法捕捉到大脑不同区域信号之间复杂的非欧氏关系。例如,虽然CNN在EEG分类中被广泛使用,但它们通常将EEG信号的关联性数据压缩成类似图像的格式,这可能无法充分保留EEG信号的原始结构和关系。由于大脑不同区域之间的关联性可能并非由物理距离决定,而CNN通常依赖于空间结构关系,因此CNN在处理大脑区域之间非距离相关的关系时似乎不是最佳的。

在这种背景下,图神经网络(GNNs)因其能够有效地分析不同类型数据(包括EEG)之间的复杂关系而备受关注。实际上,EEG可以通过图的方式表示,其中每个通道对应一个节点,而节点之间的连接(即边)则反映了大脑不同区域之间的相互作用。因此,使用基于几何图的深度学习方法(如GNNs),不仅提供了一种更合适的方式来学习和利用节点特征中的有价值信息,而且还能充分挖掘EEG数据中的连接模式。

尽管GNN方法适用于EEG分类任务,但相关研究仍较为有限,而且很少有研究将简单的GNN变体应用于AD诊断、癫痫检测或运动想象等领域。虽然这些研究在提升准确性方面相较于以往的结果有所进展,但由于缺乏对所采用技术设计空间的充分探索,GNN方法的潜力尚未得到充分挖掘。此外,由于现有研究仅聚焦于单一应用场景,通常只涉及二分类任务,它们未能充分利用GNN的可解释性特点,从而无法有效评估在推理过程中具有更高相关性的特征、边缘和节点。为了弥合这一差距,本文通过两个相关的应用案例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值