基于EEG和FNIRS信号的静息态脑连接分析

摘要

当代神经科学高度关注机器学习和网络分析的协同应用。事实上,网络神经科学分析也高度依赖于聚类度量和统计工具。在此背景下,功能性近红外光谱(fNIRS)和脑电图(EEG)的综合分析提供了关于大脑电活动和血流动力学活动的互补信息。虽然有证据支持了神经血管耦合机制在大脑加工过程中的作用。然而,目前尚不清楚这些技术是如何表示特定的神经活动模式的。本研究通过源空间分析和图论方法,考察了静息态大脑功能网络的拓扑特性,重点分析了同步EEG和fNIRS连接组在不同频段下的表现。在全局水平上观察这两种模态的小世界拓扑网络特征。连边分析表明,与EEG相比,氧合血红蛋白在两半球之间的连接性增强,但各频段之间没有差异。本研究结果表明,从fNIRS中提取的图特征可以反映神经活动的短程和长程组织结构,并且能够表征静息态下的大规模网络。要充分发挥两种模态各自的优势,还需要进一步发展两种模态的综合分析方法。总的来说,本研究认为多模态源空间分析方法可用于研究健康静息态下的大脑功能,从而为未来的任务态和病理学研究奠定基础,并可能为神经疾病提供新的综合生物标志物。

引言

大规模脑功能连接可以建模为一个网络或图。例如,结合基于簇的阈值方法和统计参数图,有助于识别图中的关键连接。近年来,多模态监测受到了越来越多的关注。功能性近红外光谱(fNIRS)和脑电图(EEG)的结合可以更全面地揭示与大脑活动相关的信息,同时也能充分利用这两种模态的非侵入性、低成本和便携性等优势。

在这两种模态中,fNIRS依赖于对后向散射光的差分测量,能够敏感地检测氧合血红蛋白(HbO)和脱氧血红蛋白(HbR)的变化。另一方面,EEG捕捉的是来自同步突触后电位的头皮脑电活动。前者具有高空间分辨率,但对头皮相关的(脑外)血红蛋白波动非常敏感;而后者能够以毫秒级的时间精度(1ms)跟踪大脑动态,但会受到容积传导效应的影响。将两者结合使用,可以弥补各自的不足,并充分发挥其优势。

大多数同时进行的EEG-fNIRS研究集中在这两种模态之间时间序列数据的时间相关性上。然而,由于大脑电活动及其血流动力学反应是通过神经血管耦合机制进行传导的,这两种技术并没有完美的时空对应关系。因此,从更具分析性和标准化的角度比较两者的对应关系,可以提供更多的信息。在这种情况下,网络神经科学可以作为一种建模大脑功能的方法,并研究多模态技术在推断大脑功能方面的潜力。

据所知,关于基于fNIRS的功能连接与EEG功能连接之间的关系,尤其是从图论角度考察大规模网络相关性的研究仍较为有限。因此,本研究旨在通过图论方法,探索在静息态下(RS),两种模态所捕获的大脑网络拓扑结构,并分析不同神经振荡频段下的网络特征。

材料与方法

从混合脑机接口(BCI)开放数据集中获得健康成人的同步静息态EEG和fNIRS数据(n=29;28.5±3.7岁)。记录包括1分钟的实验前静息态数据,实验范式包括运动想象任务和心算任务。由于本研究的重点为静息态,因此仅处理和分析数据集中的静息态部分。1分钟的静息态时长对于fNIRS是合理的,因为已有研究表明,网络指标的可靠性在1分钟扫描时间内趋于稳定。采用国际10-5系统放置的32个电极(AFp1、AFp2、AFF1h、AFF2h、AFF5h、AFF6h、F3、F4、F7、F8、FCC3h、FCC4h、FCC5h、FCC6h、T7、T8、Cz、CCP3h、CCP4h、CCP5h、CCP6h、Pz、P3、P4、P7、P8、PPO1h、PPO2h、POO1、POO2和Fz为接地电极)记录EEG数据,并使用双侧乳突参考,采样率为1000Hz(降采样至200Hz)。fNIRS数据通过36个通道(14个光源和16个探测器,光探头间距为30mm)采集,采用标准的10-20 EEG系统,采样率为12.5Hz(降采样至10Hz),如图1所示。使用760nm和850nm两个波长测量氧合水平的变化。图2展示了从EEG和fNIRS数据记录到脑网络分析的整个流程。

图1.(a)NIRS光电探测器位置。红点表示光源,绿点表示探测器。(b)EEG电极位置。

图2.从EEG和fNIRS数据的预处理到脑网络分析的整个流程概述。1.EEG和fNIRS数据记录。2.数据预处理步骤。3.源空间信号的重建方法,分别为电源成像(ESI)和扩散光学层析成像(DOT)。4.使用基于图谱的方法(Desikan-Killiany),将EEG和fNIRS源时间序列映射到相同的3D空间。5.使用功能连接(Pearson相关性)估计重建时间序列中每个感兴趣区域(ROI)之间的耦合关系。6.通过图论方法比较两种技术捕获的脑网络拓扑结构。

EEG数据预处理

采用电源成像(ESI)技术估计源空间中的皮层EEG活动。在使用EEGLab工具箱进行ESI之前,应用了一个标准化的预处理流程来去除伪迹。首先,测量的EEG数据使用共同平均参考,并通过二阶巴特沃斯IIR滤波器进行滤波,滤波范围为1-45Hz。然后,对坏通道进行识别、剔除和插值处理。接着,对信号进行目视检查,以检测和剔除仍包含大幅伪迹的数据段。最后,使用快速固定点算法(FastICA)进行分解分析,以识别并去除记录中的生物源伪迹。

fNIRS数据预处理

本研究使用扩散光学层析成像(DOT)技术在源空间中重建信号。更具体地说,本研究采用了Brainstorm工具箱(即NIRSTORM)和自定义的MATLAB脚本来重建信号。在重建之前,应用了fNIRS数据的标准预处理流程。原始数据被转换为两种波长的光密度(OD-吸光度)信号。根据以下标准去除坏通道:信号包含负值、扁平信号(方差接近0),以及有太多扁平段的信号。随后执行半自动的运动伪迹校正:通过目视检查信号中的伪迹(如尖峰或基线漂移),并使用样条插值法进行校正。最后,对OD信号进行去趋势处理,并使用0.05-0.8Hz的带通滤波器(三阶巴特沃斯IIR滤波器)进行滤波。

信号重建

使用Brainstorm软件和自定义的Matlab脚本进行EEG和fNIRS数据的重建。对于EEG,采用了多层头部模型(边界元法BEM)和MRI模板(MNI-ICBM152)来构建一个真实的头部模型(前向模型),该模型通过OpenMEEG工具生成,考虑了头部组织的不同几何形状和电导率特性。与潜在脑源相对应的偶极子被映射到经过高分辨率网格(15000个顶点)划分的皮层表面。最后,基于容积传导模型生成一个引导场矩阵,用于表示与每个单偶极源配置相对应的头皮电位。

对于fNIRS,采用Colin27大脑模板的五种组织分割来计算灵敏度矩阵(前向模型)。每个探头的光照度通过蒙特卡洛模拟估算,模拟中光子数为108,并将灵敏度值投影到皮层网格的每个顶点上。根据Rytov近似,使用伴随法将光照度分布与灵敏度值相乘,计算出每个通道每个体素的灵敏度值。然后,使用基于Voronoi的方法将灵敏度值投影到大脑皮层网格的每个顶点,该方法是一种基于体积到表面的插值方法,能够保持脑沟和脑回的形态,从而更精确地计算NIRS前向模型。

利用最小范数估计(MNE)方法求解逆问题(即在给定引导场矩阵的情况下估计源活动)。MN估计量的表达式为:

其中,G是沿皮层表面重建的信号,L是与引导场向量的范数成反比的非零元素矩阵,B是L的对角线,C是噪声协方差矩阵,λ是正则化参数,用于平衡测量数据的重建与噪声抑制之间的关系。对于EEG,采用标准化低分辨率分布成像技术(sLORETA);而对于fNIRS,则采用深度加权最小范数估计(深度加权MNE)方法。这是必要的,因为标准的MNE倾向于将逆解偏向于较浅层的源点,并且光敏值会随着深度的增加呈指数性下降。

为了便于比较,使用基于图谱的方法(Desikan-Killiany)将EEG和fNIRS的源时间序列映射到相同的3D空间中。由于光探头未覆盖整个头皮,因此需要修改Desikan-Killiany图谱,选择那些被fNIRS信号覆盖的脑区(ROIs),最终保留42个ROIs(42/68 ROIs)用于两种模态的分析。将EEG的ROIs时间序列分解为以下典型的振荡活动:δ(1-4Hz)、θ(4-7Hz)、α(8-15Hz)、β(15-25Hz)和γ(25-45Hz);而fNIRS源重建则通过改进的比尔-朗伯(Beer-Lambert)定律转换为氧合血红蛋白(HbO)和脱氧血红蛋白(HbR)浓度。

脑网络的连接差异

采用Pearson相关系数计算42个ROIs在EEG(各频段)和fNIRS(HbO和HbR)信号下的功能连接矩阵,得到每个被试的7个42×42的连接矩阵(分别对应于EEG的5个频段和fNIRS的2个血流动力学活动)。网络构建完成后,通过图/网络分析计算其拓扑特征。选取小世界指数(SWI)、全局效率(GE)、聚类系数(CC)和特征路径长度(PL)作为感兴趣的网络特征。

小世界拓扑描述了网络的效率和成本效益。如果SWI>1,则称网络为小世界网络。具有较大小世界值的大脑网络在局部连接和远程连接之间取得了平衡,从而使得信息处理更加高效,且信息成本更低。在这里,SWI的计算方法为:

全局效率(GE)衡量的是一个并行系统(如大脑网络)中所有节点通过最短路径进行信息交换的整体效率。

所有节点对之间的平均最短路径长度被称为网络的特征路径长度(PL)。聚类系数(CC)是用来衡量节点聚集程度的系数。通过生成100个随机网络(给定网络的零模型)并保持相同的节点数、边数和度分布来标准化图度量。然后,对于每个度量指标,计算实际度量值与匹配的随机网络度量值之比。为了比较网络拓扑特征,使用配对t检验对所有EEG频段与匹配的fNIRS指标进行比较,具体为[(δ,θ,α,β,γ - HbO),(δ,θ,α,β,γ - HbR)],显著性水平设定为p<0.05。使用错误发现率(FDR)进行多重比较校正。

对于比较两个区域之间连接强度的连边分析,采用基于网络的统计(NBS)方法,并使用Python脑连接工具箱进行分析。对于42×42连接矩阵中的每一条边,在每种模态(5个频段和2种血流动力学反应)之间独立地执行双样本配对t检验,并应用聚类阈值形成一组超阈值边缘。阈值的选择是基于Hedge's g统计效应大小(ES),该效应大小是通过计算两个矩阵之间每个节点的配对关系,并结合每个EEG频段的功能连接(FC)与每个fNIRS的功能连接(FC)得出的。选取Hedge's g得分为0.5(中等ES)的t统计量作为临界值(t-stat=3.0)。最后,通过置换检验(5000次置换)对每个成分的p值进行FWER(族系错误率)校正。FWER校正后的p值小于0.05则表明连接强度存在统计显著性。

使用Matlab脑连接工具箱和自定义的Matlab脚本计算图的全局和边缘拓扑特征。

结果

拓扑分析显示,所有EEG频段(δ、θ、α、β、γ)和fNIRS(HbO和HbR)的SWI>1,这表明在两种模态下都具有明显的小世界特性。一个网络如果满足CCreal/CCrand>1且PLreal/PLrand≈1,则被认为具有小世界特性。这意味着与随机网络相比,真实的人脑网络在网络中任意两个节点之间都有一个更大的聚类系数(CC)和近似相同的路径长度(PL)。这一点在所有EEG频段中得到了验证,所有频段的聚类系数(CC)均显著高于HbO,尤其是在低频段范围(δ、θ、α),并且PL值接近1。这表明,相较于HbO,EEG网络具有更好的聚类能力和小世界性。对于HbR,所有EEG频段的聚类系数均较高(图3)。此外,δ、θ、α、β、γ频段的E值也显著高于HbO和HbR(图4)。这意味着在电生理活动中,神经信息通过全局最优且最短的路径进行传递,相较于血流动力学活动,信息传递更快、更直接。

图3.左侧:EEG(δ、θ、α、β、γ)和fNIRS网络的小世界指数(SWI)条形图。右侧:EEG(δ、θ、α、β、γ)和fNIRS(HbO和HbR)网络的全局特征路径长度(PL)和全局聚类系数(CC)图。

图4.(a)、(b)、(c)分别表示EEG(δ、θ、α、β、γ)和fNIRS(HbO和HbR)的全局效率(E)、全局特征路径长度(PL)和全局聚类系数(CC)箱线图。红色星号表示EEG与fNIRS(HbO)之间的显著差异;黑色星号表示EEG与fNIRS(HbR)之间的显著差异。

通过NBS进行连边分析发现,在3.5的预设阈值下,与EEG相比,HbO在所有频段[δ(p=0.005)、θ(p=0.005)、α(p=0.004)、β(p=0.004)、γ(p=0.003),如图5所示,已进行多重比较校正]的功能连接性均有所提高。该子网络在不同频段中包含的边数分别为:δ-HbO连接25个节点,共51条边;θ-HbO连接23个节点,共57条边;α-HbO连接24个节点,共63条边;β-HbO连接26个节点,共59条边;γ-HbO连接25个节点,共57条边(表1)。

图5.fNIRS(HbO)与EEG各频段之间的子网络:(a)δ,(b)θ,(c)α,(d)β,(e)γ。红点表示节点,黄色连线表示网络的边。

这些子网络在所有频段上具有相似性,其特点是具有跨半球和半球内的连接。前者包括以下连接:

-右侧额上回和额中回(位于运动前区,FPol,RoMF)与左侧额上沟(位于人类额眼区,Op,Or,Tr),以及与左侧初级感觉运动皮层(PreC,PaC,PoC)的中央前回和中央后回之间的连接;

-左侧感觉运动皮层(PreC,PaC,PoC)与右侧颞枕区(MT,B,Fu),以及右侧后扣带回/楔前叶(PerCa,LO)之间的连接;

-额中回(RoMF)与颞枕皮层(B)及其同位区域之间的连接。

后者包括以下连接:

-右侧额眼区(Op,Or,Tr)与右侧颞枕区(B)之间的连接;

-右侧中央后回(PoC)与右侧舌回(Lg)之间的连接;

-右侧颞枕区与右侧舌回(Lg)之间的连接;

-左侧额上沟和额中回(Or,RoMF)与左侧楔前叶(LO)之间的连接;

-左侧中央后回(PoC)与左侧矩状旁回(PerCa)区域之间的连接。

该图谱标签的完整列表如下(表1):

讨论

本研究首次利用源空间分析方法,考察了同步EEG和fNIRS连接组在不同频段下的功能网络拓扑特性。这两种模态都存在小世界拓扑网络,表明小世界特性是人脑功能连接的普遍原则,与不同成像技术的不同机制无关。大脑既支持分离式信息处理,也支持分布式信息处理,这是认知加工的关键,这意味着特定区域的局部活动通过大规模分布式系统中的协调振荡得以传播。本研究结果显示,HbO网络的聚类系数(CC)显著低于EEG,且路径长度(PL)较大,表明HbO网络的信息并行传输能力较弱。HbO衍生的血流动力学活动与EEG之间的网络差异主要体现在跨半球连接上,而半球内的连接差异则相对较小。先前的研究发现,静息态下不同脑区的血氧变化表现出两种主要的连接模式:一是同侧大脑区域之间的短程连接,二是对侧大脑区域之间的长程连接。有研究认为,同源连接的产生是通过直接的结构连接,而前后连接可能反映了远距离皮层区域之间瞬时神经激活的同步化。不同振荡频率在皮层网络中的作用会随认知状态的变化而变化,这些状态通常持续几毫秒。由于静息态中的神经活动组织可能涉及不同频率振荡的协同作用,并且多个EEG频段可能与同一静息态网络活动相关。因此,本研究结果可能揭示了静息态下未被发现的状态变化或神经动态。鉴于血流动力学反应存在几秒钟的延迟,fNIRS无法区分这些快速变化的神经反应,它们反映的是多个振荡网络配置的总和。

许多研究发现,EEG活动与代谢活动有关。Moosmann等人(2003)通过同时测量EEG-fNIRS静息态(RS)发现,α活动与枕叶皮层中的脱氧血红蛋白(HbR)呈正相关。Koch等人(2008)的研究表明,高个体α频率(IAF)峰值与低氧合反应相关联。他们推测IAF与神经元和血管反应之间的关系取决于激活神经元群的大小。另一种可能的解释是,由于氧合血红蛋白与局部脑血流密切相关,因此RS状态与较低的代谢需求相关。然而,目前普遍接受的观点是,通过血红蛋白浓度变化得出的功能连接图,反映了大脑的自发神经活动以及其他系统生理因素的共同作用。常规fNIRS通道(源-探测器距离为3cm)测得的信号中约有94%是由系统性血流动力学变化引起的,这些变化会产生低频波动。因此,系统性的血流动力学变化会导致血氧浓度(HbO)信号的方差更大,并使得大脑不同区域之间的相关性较高,即使在进行运动伪影校正和预白化处理后,这种效应仍然存在,从而导致静息态下的功能连接(RS FC)被高估。此外,与脱氧血红蛋白相比,氧合血红蛋白更易受到脑外生理因素的污染。总而言之,本研究结果指出了电生理学和血流动力学网络之间的特征性差异,并建议同时使用这两种技术,因为它们可以更清晰地反映大脑的动态变化。然而,理解每种模态的特征并了解其差异和相似性对正确解读结果至关重要。在这种情况下,将基于图论分析的脑网络拓扑指标与多种机器学习(ML)算法相结合,可以提取重要的判别特征,并有助于揭示潜在的大脑网络拓扑特性的变化。此外,研究这些图特征是否能够捕捉任务条件下的瞬时和局部神经元活动也很有意义。未来的研究可以进一步将EEG-fNIRS与机器学习技术相结合,从而更好地提取病理条件(如阿尔茨海默病等)下的判别特征。

参考文献:Blanco, R., Koba, C., Crimi, A. (2023). Resting State Brain Connectivity Analysis from EEG and FNIRS Signals. https://doi.org/10.1007/978-3-031-36021-3_58

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

### EEG fNIRS 在运动想象中的应用对比 #### 技术概述 电图(EEG)是一种通过检测头皮上的电信号来记录大活动的技术[^2]。功能性近红外光谱成像(fNIRS)则利用近红外光穿透颅骨并测量血氧水平变化,从而反映大皮层的功能激活情况[^1]。 #### 应用场景 在运动想象(Motor Imagery, MI)领域中,EEG 是最广泛使用的神经技术之一。它能够实时捕捉到由运动想象引发的大区域的事件相关去同步化/同步化(ERD/ERS),这些信号可以被用于解码用户的意图。相比之下,fNIRS 提供了一种无创的方式监测运动执行或想象有关的大血液动力学反应,特别是在前额叶顶叶皮质区域能够提供较高的空间分辨率。 #### 数据采集特性比较 - **时间分辨率**: EEG 的优势在于其高时间分辨率,适合于快速动过程的研究以及在线反馈系统的开发。而 fNIRS 虽然具有较低的时间精度,但对于长时间实验设计来说更为稳定可靠。 - **空间定位能力**: 就空间分辨率而言,fNIRS 明显优于 EEG。由于光学探头可以直接放置在感兴趣的具体位置上,因此能更精确地标定特定区内的功能状改变。 #### 实验设置差异 对于EEG 的 MI 系统通常需要复杂的预处理步骤如滤波、伪迹去除等;同时还需要考虑个体间头皮导联布局可能存在的偏差影响分类性能等问题。另一方面,在构建 fNIRS-MI 平台时,则需注意光源探测器间距的选择会对信噪比造成显著作用,并且头部移动可能会干扰数据质量。 #### 成本效益分析 消费级别的 EEG 设备相对便宜且便携性强,非常适合初学者或者预算有限的小型项目使用。然而高端科研用途下的多通道配置价格昂贵。至于 fNIRS 方面虽然初始购置成本较高但由于维护简单使用寿命较长所以长期来看可能是划算的投资选项。 ```python import numpy as np from scipy import signal def preprocess_eeg(eeg_data): """Preprocess raw EEG data.""" filtered = signal.butterworth_filter(eeg_data, lowcut=8, highcut=30, fs=256) artifact_removed = remove_artifacts(filtered) return artifact_removed def process_fnirs(fnirs_data): """Process raw fNIRS data.""" oxy_hb, deoxy_hb = separate_channels(fnirs_data) smoothed_oxy = smooth_signal(oxy_hb) smoothed_deoxy = smooth_signal(deoxy_hb) return smoothed_oxy, smoothed_deoxy ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值