瞬态、非耦合的功率和动态功能连接

摘要

近年来,关于大脑网络活动时间结构的研究,特别是动态功能连接(dFC),受到了越来越多的关注。多项研究表明,动态功能连接与认知、人口统计学特征以及疾病状态密切相关。滑动窗口法是计算动态功能连接最常用的方法之一。然而,这种方法无法检测快速认知过程中的瞬时时间变化(约100ms),但这些快速变化可以通过基于模型的方法(如隐马尔可夫模型,HMM)或结合电生理学的动态网络模式(DyNeMo)来识别。这些新方法能够在大脑活动的“功率”(即方差)和功能连接共享相同动态的假设下,提供对它们的时间变化估计。然而,这一假设缺乏理论支持。通过采用一种新方法——多动态网络模式(Multi-dynamic DyNeMo)——该方法允许功率和功能连接网络具有不同的动态特性,本研究基于静息态脑磁图(MEG)数据展示了功率和功能连接网络的动态并不耦合。此外,通过使用一个视觉任务的MEG数据集,本研究发现功率和功能连接网络的动态受到任务的调节,使得它们的动态耦合在任务期间发生了显著变化。这项研究揭示了传统方法无法捕捉到的诱发网络响应和持续活动的新见解,挑战了功率和功能连接共享相同动态的假设。

引言

近年来,研究者们逐渐认识到认知任务并非由单个脑区孤立地完成,而是取决于多个脑区之间的协同作用。功能连接(FC)是描述这种协同作用的一个常用指标,它指的是空间上遥远区域之间功能活动的时间相关性。越来越多的证据表明,功能连接与大脑的潜在神经活动密切相关,并且在健康状态与疾病状态之间,功能连接存在显著差异。

传统上,人们通常假设在静息态扫描期间,脑区之间的相互作用强度是恒定的(即静态的)。然而,考虑到大脑的动态特性,功能网络随时间变化的研究视角正变得越来越重要。计算动态功能连接最常用的方法之一是滑动窗口法,随后使用K均值聚类等聚类方法来识别可重复且瞬态的功能连接状态模式。

尽管滑动窗口法应用广泛,但它是一种启发式方法,其中超参数的选择可能会影响结果的解释。更重要的是,滑动窗口法难以适应数据中的快速动态变化,也无法捕捉到大脑动态中的亚秒级转变,而这些转变在脑磁图(MEG)等电生理数据中已被证明存在。这是由于滑动窗口法假设窗口大小固定,较大的窗口对快速变化不敏感,而较小的窗口则可能导致功能连接估计值的噪声增加。

机器学习领域的最新进展提供了基于数据驱动的方式来推断动态功能连接。例如,最近提出的动态网络模式模型(DyNeMo)允许多个网络同时激活。研究表明,DyNeMo能够比基于状态的方法(如隐马尔可夫模型)更准确地推断动态功能连接,并且在研究任务数据时能够识别出更简洁的动态网络描述。

DyNeMo模型的一个重要假设是,时变(TV)方差(将其等效为“功率”)和功能连接(FC)遵循相同的时间动态,但没有理论依据表明大脑区域之间的连接波动应该与单个大脑区域的功率波动耦合。这一假设促使我们提出了多动态网络模式(M-DyNeMo),作为DyNeMo的扩展,以推断潜在非耦合的功率和功能连接动态。

在这里,本研究利用静息态MEG数据,采用传统的滑动窗口法展示了功率和功能连接动态分离的证据,并证明了M-DyNeMo可以推断出具有不同动态特征的网络。研究进一步表明,这些网络在不同被试、数据集和分区之间具有良好的可重复性,从而验证了M-DyNeMo在MEG数据分析中的稳健性。通过使用视觉任务数据,M-DyNeMo模型揭示了功率和功能连接动态对视觉刺激的不同诱发反应。此外,本研究还展示了任务诱导下功率和功能连接动态之间存在耦合现象的证据。

材料与方法

数据集

本研究使用了两个真实的MEG数据集。第一个数据集是英国MEG Partnership计划的一部分,使用275通道的CTF MEG扫描仪以1.2kHz的采样率采集。该数据集包括65名被试的(睁眼)静息态记录和67名被试的视觉任务记录,其中63名被试同时具有静息态和任务MEG记录。本文将此数据集称为MEGUK数据集。

第二个数据集是一个视觉任务MEG数据集,使用Elekta Neuromag Vectorview 306扫描仪以1kHz的采样率采集。在该数据集中,19名被试(11名男性,8名女性,年龄为23-37岁)被扫描了六次,在扫描期间,分别给他们呈现名人、陌生人或混乱面孔的图像。每次记录时长约7.5分钟,包含大约200个试次,这些试次均匀地分配到三种不同的图像中。在实验过程中,要求被试根据他们认为每张图像的对称性按下两个键中的一个,以确保他们的注意力集中在图像上。MaxFiltered数据是公开的,读者可以参考原始论文以获取更多关于实验设计和数据收集的详细信息。本文将此数据集称为Wakeman-Henson数据集。

数据预处理

这两个数据集均使用相同的分析流程,并采用osl-ephys包进行预处理。首先,对原始数据应用了0.5-125Hz的带通滤波以及50Hz和100Hz的陷波滤波。然后,将数据降采样至250Hz,并使用自动化的坏段和坏通道检测方法来去除异常噪声段和通道。最后,采用独立成分分析(ICA)步骤去除噪声。

源重建

使用osl-ephys进行共配准和源重建。首先将MEG数据与每个被试的结构MRI数据和使用Polhemus采集的数字化头部形状点进行共配准。然后,使用线性约束最小方差(LCMV)波束形成算法将数据源重建到8mm各向同性网格上。

分区

MEGUK数据集使用了两个图谱进行分区:一个是包含38个感兴趣区域(ROI)的Giles分区,另一个是包含52个ROI的Glasser分区,分别称为MEGUK-38(本文仅使用其静息态记录)和MEGUK-52。Wakeman-Henson数据集则使用Giles分区划分为38个ROI。最后,应用了对称多变量泄漏减少和符号翻转算法。

模型训练前的准备

为了促进模型训练的收敛,本研究采取了一些额外的步骤。首先,数据在1-45Hz之间进行了带通滤波,以聚焦于神经活动最为显著的频率范围,然后使用希尔伯特变换提取振幅包络信号。接下来,对振幅包络数据进行平滑处理,窗口大小为25个采样点(100ms,250Hz),步长为1个采样点(4ms,250Hz)。然后,应用标准化处理(z变换)以确保每个通道的均值为零,方差为1。此步骤对每个记录会话独立进行。需要注意的是,标准化处理会消除记录会话之间(静态)功率信息的异质性,但本研究关注的功率波动的时间结构在每个会话内保持不变。最后,使用满秩PCA对数据进行正交化处理。

功率和功能连接的度量

本研究使用信号振幅的方差(而非均值激活)作为功率的度量。这是因为本研究采用了所谓的零均值模型,该模型在之前的文献中已被广泛使用。振幅信号之间的相关性被用作功能连接的度量。

滑动窗口法

该方法的目的是使用一种无模型的方法,根据功率或功能连接的动态变化将时间维度划分为有限数量的状态。该启发式方法结合了滑动窗口和K均值聚类。具体步骤包括:

1、应用滑动窗口,窗口大小为500个采样点(2s,250Hz),步长为10个采样点(40ms,250Hz)。

2、对于每个窗口,计算所有通道/区域的包络时间序列的标准差,并计算不同通道/区域之间包络时间序列的相关性。

3、分别对时变相关性和标准差应用K均值聚类算法。

4、根据时变功率或功能连接,将每个时间点分配到一个聚类(这些聚类可以看作是一个状态)中。因此,本研究分别为功率和功能连接形成了两个状态时间序列。

M-DyNeMo生成模型

本研究构建了M-DyNeMo的生成模型。从概念上讲,M-DyNeMo学习了两组网络空间配置的基础集(称为模式),一组用于功率(其中网络是大脑区域上的空间图),另一组用于功能连接(其中网络是边缘连接组)。其基本假设是,时变功率/功能连接是基础集的时变线性混合。混合系数的时间序列表征了模式的动态,并被称为模式时间序列。功率和功能连接的波动可以通过各自基础集的混合动态来独立描述。与DyNeMo类似,假设数据是由均值为零的多元高斯分布生成的。

结果

在这里,本研究考察了三个MEG数据集:MEGUK-38(静息态)、MEGUK-52和Wakeman-Henson。

滑动窗口法揭示了不同的功率和功能连接动态

首先,应用滑动窗口法和K均值聚类算法,从MEGUK-38静息态数据获得的38个脑区的幅值时间序列(1-45Hz)中,分别识别出时变功率(方差)和时变功能连接(相关性)的两种不同动态。图1a展示了MEGUK-38静息态数据中第一个被试前20s的状态时间序列(K均值聚类分配结果)。从定性分析来看,时变功率和功能连接并不遵循相同的动态,且两者时间序列之间的相关性较低,如图1b所示。此外,这两种状态时间序列分别对应的功率和功能连接图,如图1c所示。

图1.滑动窗口法揭示了不同的功率和FC动态。

虽然图1提供了功率和功能连接具有不同动态的初步证据,但我们无法确定这是否是由于任意超参数选择(例如窗口大小)所引起的伪影,亦或是滑动窗口法无法自适应快速动态变化的结果。因此,我们需要一种能够以自适应、数据驱动的方式推断多种动态的方法。为此,本研究提出了新的方法——多动态网络模式(M-DyNeMo)。

功率和功能连接具有相似的空间模式和不同的动态特征

首先,在MEGUK-38静息态数据中获得的38个脑区的幅值时间序列(1-45Hz)上训练了M-DyNeMo。图2a展示了该数据集中第一个被试的前8s的重正化模式时间序列。从定性角度来看,功率(α)和功能连接(β)的模式时间序列具有非常不同的特征,具体表现为β的二值化程度远高于α。

图2.功率和功能连接具有相似的空间模式,但具有不同的动态特征。

每种模式的功率和功能连接网络如图2b所示。这些网络与多个先前研究的结果相一致。为了更清晰地进行视觉比较,本研究还展示了功能连接度图,每个图绘制了每个节点的相关性总和,并将其与所有模式的平均相关性进行比较。需要注意的是,模型发现的空间模式顺序是任意的;因此,图中展示的网络图在事后进行了重新排序,以使其与每对模式的功率和功能连接的空间活动模式相匹配。特别是,功率和功能连接模式1在整个大脑中表现出低于平均水平的活动。我们认为这种情况的出现是由于模式时间序列生成模型中的“总和为一”约束,也就是说,这些模式代表的是在其他网络不活跃时活跃的“背景”网络。原始DyNeMo论文中也有对此的观察和讨论。尽管功率和功能连接不要求具有相似性,但两者的空间图仍然展现出高度相似的空间模式。具体而言,在最大统计置换检验下,功率和功能连接度图在模式对1、2和4之间的余弦相似性显著较高,如图2c中的对角线项所示。

尽管我们识别出功率和功能连接模式在相同区域表现出活动,但它们对应的模式时间序列(动态,α与β)并不显著相关,如图2d右侧所示,这表明在某一特定区域功率较高的时间点,并不一定意味着该区域的功能连接也会较高。功率模式动态(α,左侧)和功能连接模式动态(β,中间)内部的相关性大多为负值,表明当一个模式激活时,其他模式通常会去激活。

单一动态DyNeMo由时变功率主导

鉴于有证据表明存在不同的动态,本研究感兴趣的是,在仅允许单一动态的情况下(如标准DyNeMo),哪种动态在解构过程中占主导地位。为此,本研究假设功率和功能连接共享由功率模式时间序列α给出的单一动态,该时间序列是从训练后的M-DyNeMo模型中提取的,然后重新计算每种模式的功率和功能连接。结果网络如图3a所示。将其与标准DyNeMo在相同幅度时间序列(1-45Hz)上推断的网络进行比较(如图3b所示),可以看到M-DyNeMo推断的功率模式时间序列α包含与标准DyNeMo推断的模式时间序列相似的信息。从定量角度来看,对于每对模式,使用M-DyNeMo推断的功率模式时间序列α重新计算的网络与标准DyNeMo给出的推断网络之间存在显著较大的余弦相似性。这表明标准DyNeMo提供的描述主要由功率动态而非功能连接动态主导。此外,通过使用M-DyNeMo推断的功能连接模式时间序列β重新计算网络,本研究在附录图中(E.1)展示了M-DyNeMo提供的功能连接动态包含了与标准DyNeMo推断的模式时间序列不同的信息。

图3.单一动态DyNeMo由时变功率主导。

M-DyNeMo推断的网络在不同数据子集之间具有可重复性

为了评估模型的可重复性和稳健性,本研究在MEGUK-38静息态数据集的不同被试子集上训练了M-DyNeMo。将该数据集中的65名被试分为两半,其中前半部分包含被试1-32,后半部分包含被试33-65。M-DyNeMo分别在每一半数据上独立训练。图4a和4b展示了M-DyNeMo在每一半数据上推断的网络图,并通过余弦相似性匹配模式,图中还展示了每对模式的匹配结果。总体来说,在将数据分为两半后,无论是在哪一半数据中,推断出的网络结构都是一致的,并且使用最大统计量置换检验方法得出的余弦相似性值很大。在功率模式2和3的空间活动模式中,仅存在较小的差异。

图4.M-DyNeMo推断出的网络结构在两半数据之间具有可重复性。

功率和功能连接动态在诱发网络响应中表现出不同的时间特征

从上述结果可以看出,M-DyNeMo通过静息态MEG数据的幅值时间序列(1-45Hz)推断出了功率和功能连接具有不同的动态(即不相关的模式时间序列)。接下来转向任务MEG数据,并提出以下问题:α和β对任务的响应是否不同?本研究使用了Wakeman-Henson数据集进行这项研究,该数据集中参与者观看了名人、陌生人或混乱面孔的图像。这使我们能够研究模式时间序列对视觉刺激的响应,以及对不同视觉刺激的响应差异。

网络图如图5a所示,与从MEGUK-38静息态数据推断出的网络图(图2b)相似。图5b展示了不同对比条件下的诱发网络响应,包括所有视觉刺激的平均值、面孔(包括名人和陌生人面孔)与混乱面孔之间的差异,以及名人与陌生人面孔之间的差异。

图5.诱发响应在不同模式时间序列中具有不同的特征。

功率动态

首先关注图5b的顶行。与Gohil等人(2024b)中的分析类似,本研究采用了两级一般线性模型(GLM)来计算诱发网络响应,其中对每个任务分段的M-DyNeMo模式时间序列进行诱发响应分析。需要注意的是,这一分析是在M-DyNeMo模型完成训练后进行的,即模型并未提前知道任务的时间信息。使用最大统计量置换检验来识别显著响应的时段。

从图5b的顶行中可以看到,功率α的诱发网络响应与在相同数据上训练的标准DyNeMo模型得到的结果基本一致。例如,在平均视觉响应中,视觉网络(α模式2)首先被激活,随后是额叶网络(α模式4)的激活以及视觉网络的去激活。在未混乱面孔(名人和陌生人面孔)与混乱面孔之间的差异中,视觉网络被激活,而额颞叶网络则出现延迟去激活。在对名人面孔和陌生面孔的反应进行分析时,并没有发现显著差异。

功能连接动态

图5b的底行展示了功能连接网络模式动态β的诱发响应。对于平均视觉响应(左图),可以看到模式1立即激活,模式3去激活,随后是模式2出现延迟且持续的激活,以及模式1和模式4的去激活。在比较面孔和混乱面孔的响应差异时,出现了模式3的延迟激活和模式1的去激活。最后,在比较名人和陌生面孔的响应时,模式3出现了短暂的激活。

功率和功能连接动态之间的耦合受任务调节

如图5所示,有证据表明功率和功能连接动态在诱发网络响应中具有不同的时间特征。这促使我们进一步探讨功率动态和功能连接动态之间的耦合程度在任务和静息态下是否有所不同。为此,本研究在一个新的数据集MEGUK-52上训练了M-DyNeMo,该数据集包含63名被试,这些被试既有静息态数据也有视觉任务数据,总计126个session。

图6a展示了推断出的网络,这些网络与使用相同数据集但不同分区(MEGUK-38静息态数据)以及不同数据集(Wakeman-Henson——该数据集仅包含视觉任务数据,且使用的被试群体也不同)推断出的网络基本一致。这再次证明了M-DyNeMo在不同数据集和分区上的可重复性。

图6.α和β之间的耦合受任务刺激的调节。

图6b展示了对视觉刺激的诱发网络响应,与前述研究结果一致。图6c则展示了静息态下功率(α)和功能连接(β)动态之间的相关性(左图)、视觉刺激前0.5s和后2s时段内的相关性(中图),以及任务态和静息态之间相关性的差异(右图)。特别是,从静息态到任务态,α模式2与β模式1的相关性显著增加,而与β模式2的相关性减少,这与图6b中α模式2和β模式1的即时激活以及β模式2的延迟激活一致。值得注意的是,在该数据集上使用滑动窗口法也为这两种动态耦合差异提供了证据。

结论

本研究提出了一种新的方法来推断大脑活动中两个可能独立的动态过程,即功率和动态功能连接。研究结果表明,所提出的模型具有良好的稳健性,且推断出的网络在不同被试、数据集和分区上具有可重复性。在MEG大脑活动中,功率和功能连接具有相似的空间分布模式,但它们在时间动态上表现出明显的差异。此外,研究还发现,这两种动态在MEG任务数据中对视觉刺激的响应方式不同,并且两者之间的耦合程度受到任务的调节。

参考文献:Huang, R., Gohil, C. and Woolrich, M. (2025), Evidence for Transient, Uncoupled Power and Functional Connectivity Dynamics. Hum Brain Mapp, 46: e70179. https://doi.org/10.1002/hbm.70179

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值