20200929 -
最近在看《异常点检测》这本书,然后看到了线性模型中的内容,这里涉及到了特征变量的东西。只不过,因为已经很久没有涉及线性代数的东西,这部分内容大部分都遗忘了,但是大致上翻了翻也基本上弄明白了。
不过,这里我看到了几个点,后续应该可以用到。
首先,矩阵是线性变换的本质,即使不是方阵也是有变换的过程的。
然后,就是学习PCA的时候看到的内容,这部分内容是说他本质上就是找特征变量的过程。
后面还是要把这部分内容好好记录记录,
https://www.bilibili.com/video/BV1ps41147Z5/?spm_id_from=333.788.videocard.4
上面这个系列的视频非常不错,平时可以多看看,加深对线性代数的理解。
https://math.stackexchange.com/questions/243533/how-to-intuitively-understand-eigenvalue-and-eigenvector
https://math.stackexchange.com/questions/23596/why-is-the-eigenvector-of-a-covariance-matrix-equal-to-a-principal-component?noredirect=1&lq=1
https://zhuanlan.zhihu.com/p/111099659
https://wiki.pathmind.com/eigenvector
我就感觉,这两天看了这个《异常点检测》,然后配合上线性代数的东西,总感觉一大堆东西都涌入了我脑海中,但是我还是没有将他们形成系统。
最大的问题就是这个特征向量的东西,其实本质上应该是说对线性代数的东西没有深入的理解。
还是要理解线性代数的本质,线性变换到底是怎么一回事。