线性代数的本质 - 线性变换

20200929 -
最近在看《异常点检测》这本书,然后看到了线性模型中的内容,这里涉及到了特征变量的东西。只不过,因为已经很久没有涉及线性代数的东西,这部分内容大部分都遗忘了,但是大致上翻了翻也基本上弄明白了。

不过,这里我看到了几个点,后续应该可以用到。
首先,矩阵是线性变换的本质,即使不是方阵也是有变换的过程的。
然后,就是学习PCA的时候看到的内容,这部分内容是说他本质上就是找特征变量的过程。
后面还是要把这部分内容好好记录记录,

https://www.bilibili.com/video/BV1ps41147Z5/?spm_id_from=333.788.videocard.4
上面这个系列的视频非常不错,平时可以多看看,加深对线性代数的理解。

https://math.stackexchange.com/questions/243533/how-to-intuitively-understand-eigenvalue-and-eigenvector
https://math.stackexchange.com/questions/23596/why-is-the-eigenvector-of-a-covariance-matrix-equal-to-a-principal-component?noredirect=1&lq=1
https://zhuanlan.zhihu.com/p/111099659

https://wiki.pathmind.com/eigenvector


我就感觉,这两天看了这个《异常点检测》,然后配合上线性代数的东西,总感觉一大堆东西都涌入了我脑海中,但是我还是没有将他们形成系统。
最大的问题就是这个特征向量的东西,其实本质上应该是说对线性代数的东西没有深入的理解。
还是要理解线性代数的本质,线性变换到底是怎么一回事。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值