Bresenham画线K>1时的递归公式

本文介绍了Bresenham算法在k>1时的递归公式,详细讨论了P1在直线左方、右方和直线上时,下一点P2如何逼近。通过公式推导得出递推关系,并总结了直线绘制的步骤。
摘要由CSDN通过智能技术生成

算法1 k>1

此时y增加1,x增加小于1,所以以y为主。

P1在直线的左方

假设直线上相邻两点S1,S2 ,S1.x < S2.x, S1在屏幕上逼近P1,S2应该逼近哪个点呢?

假设P2.x = p1.x + 1

因为S2.x = S1.x + ∆x

因为P1.x < S1.x < p1.x + 0.5

所以p1.x + ∆x < S1.x + ∆x<p1.x +∆x + 0.5

所以p1.x + ∆x < S2.x<p1.x +∆x + 0.5

因为 0<∆x<1,所以S2最小逼近P1,最大逼近P2.

P1在直线的右方

假设直线上相邻两点S1,S2 ,S1.x < S2.x, S1在屏幕上逼近P1,S2应该逼近哪个点呢?

假设P2.x = p1.x + 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟建行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值