算法1 k>1
此时y增加1,x增加小于1,所以以y为主。
P1在直线的左方
假设直线上相邻两点S1,S2 ,S1.x < S2.x, S1在屏幕上逼近P1,S2应该逼近哪个点呢?
假设P2.x = p1.x + 1
因为S2.x = S1.x + ∆x
因为P1.x < S1.x < p1.x + 0.5
所以p1.x + ∆x < S1.x + ∆x<p1.x +∆x + 0.5
所以p1.x + ∆x < S2.x<p1.x +∆x + 0.5
因为 0<∆x<1,所以S2最小逼近P1,最大逼近P2.
P1在直线的右方
假设直线上相邻两点S1,S2 ,S1.x < S2.x, S1在屏幕上逼近P1,S2应该逼近哪个点呢?
假设P2.x = p1.x + 1