【力扣刷题】最短路径和

最小路径和

🔗 题目链接

题目描述

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步。

示例 1:

在这里插入图片描述

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

题目分析

显然,这道题可以使用动态规划来解决,我们把dp[i][j]表示走到(i, j)的最短路径和,则得到状态转移方程:

[!note]

题目提示“每次只能向下或者向右移动一步”,也就是说不会走回头路。所以,不用额外定义dp二维数组来存储(i, j)的最短路径和,可以直接使用grid来存储已计算的dp(i, j)

题解代码

/**
 * @param {number[][]} grid
 * @return {number}
 */
var minPathSum = function (grid) {
  let i,
    j,
    m = grid.length, // 行长度
    n = grid[0].length; // 列长度

  for (i = 0; i < m; i++) {
    for (j = 0; j < n; j++) {
      // 初识位置
      if (i == 0 && j == 0) continue;
      // 只能从右边过来的
      if (i == 0) grid[i][j] += grid[i][j - 1];
      // 只能从上面过来的
      else if (j == 0) grid[i][j] += grid[i - 1][j];
      // 找两边来的最短路径
      else grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
    }
  }
  return grid[m - 1][n - 1];
};

运行结果

在这里插入图片描述

代码基地

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值