Eight-point algorithm

转载地址:https://en.wikipedia.org/wiki/Eight-point_algorithm

在 2D-2D VO中,当已知内参矩阵K,需要求解 本征矩阵E  ;当不知道K时,需要求解基础矩阵F  ;

8点法可以用来求解E,F;实际中 the normalized eight-point algorithm更适用于求F。



********    番外篇Total least squares   ****

在  I. Markovsky and S. Van Huffel, Overview of total least squares methods. Signal Processing, vol. 87, pp. 2283–2302, 2007.一文中,



如何由一对对应的图像点,求3D点(三角化问题)https://en.wikipedia.org/wiki/Essential_matrix#3D_points_from_corresponding_image_points



因为我们求出来的 t 与实际的 相差一个正倍数, 在带入式3中 求x3 时,求得的x3与实际相差一个正倍数 ,所以x1,x2也与实际相差一个正倍数;

至此与实际相差一个正倍数的(x1,x2,x3)坐标求出来了, 与实际相差一个正倍数的(x1',x2',x3')根据式2求得。为何(x1',x2',x3')也是与实际相差一个正倍数,可以自己简单推导一下。



 “ Visual Odometry Part I: The First 30 Years and Fundamentals ” ,By Davide Scaramuzza and Friedrich Fraundorfer


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值