转载地址:https://en.wikipedia.org/wiki/Eight-point_algorithm
在 2D-2D VO中,当已知内参矩阵K,需要求解 本征矩阵E ;当不知道K时,需要求解基础矩阵F ;
8点法可以用来求解E,F;实际中 the normalized eight-point algorithm更适用于求F。
******** 番外篇Total least squares ****
在 I. Markovsky and S. Van Huffel, Overview of total least squares methods. Signal Processing, vol. 87, pp. 2283–2302, 2007.一文中,
如何由一对对应的图像点,求3D点(三角化问题)https://en.wikipedia.org/wiki/Essential_matrix#3D_points_from_corresponding_image_points
因为我们求出来的 t 与实际的 t 相差一个正倍数, 在带入式3中 求x3 时,求得的x3与实际相差一个正倍数 ,所以x1,x2也与实际相差一个正倍数;
至此与实际相差一个正倍数的(x1,x2,x3)坐标求出来了, 与实际相差一个正倍数的(x1',x2',x3')根据式2求得。为何(x1',x2',x3')也是与实际相差一个正倍数,可以自己简单推导一下。
“ Visual Odometry Part I: The First 30 Years and Fundamentals ” ,By Davide Scaramuzza and Friedrich Fraundorfer