Cubic Interpolator 和 spherical linear interpolation

转载地址:http://www.paulinternet.nl/?page=bicubic

spherical linear interpolation(球面线性插值): Eigen::Quqterniond::slerp() 函数是在四元数表示的两个角度之间插值。

参照 http://www.paulinternet.nl/?page=bicubic 

Cubic interpolation

On this page you can find explanation about ( n -)cubic interpolation and implementations in Java and C++.
Anything at this page may be copied and modified.
Please contact me if you find an error.

Cubic interpolation

If the values of a function f(x) and its derivative are known at x=0 and x=1, then the function can be interpolated on the interval [0,1] using a third degree polynomial. This is called cubic interpolation. The formula of this polynomial can be easily derived.

A third degree polynomial and its derivative:

f(x) = ax^3 + bx^2 + cx + d

f'(x) = 3ax^2 + 2bx + c

plot


For the green curve:

a = -\tfrac{1}{2}\cdot2 + \tfrac{3}{2}\cdot4 - \tfrac{3}{2}\cdot2 + \tfrac{1}{2}\cdot3 = \tfrac{7}{2}

b = 2 - \tfrac{5}{2}\cdot4 + 2\cdot2 - \tfrac{1}{2}\cdot3 = -\tfrac{11}{2}

c = -\tfrac{1}{2}\cdot2 + \tfrac{1}{2}\cdot2 = 0

d = 4

f(x) = \tfrac{7}{2}(x-2)^3 - \tfrac{11}{2}(x-2)^2 + 4

The values of the polynomial and its derivative at x=0 and x=1:

f(0) = d

f(1) = a + b + c + d

f'(0) = c

f'(1) = 3a + 2b + c

The four equations above can be rewritten to this:

a = 2f(0) - 2f(1) + f'(0) + f'(1)

b = -3f(0) + 3f(1) - 2f'(0) - f'(1)

c = f'(0)

d = f(0)

And there we have our cubic interpolation formula.

Interpolation is often used to interpolate between a list of values. In that case we don't know the derivative of the function. We could simply use derivative 0 at every point, but we obtain smoother curves when we use the slope of a line between the previous and the next point as the derivative at a point. In that case the resulting polynomial is called a Catmull-Rom spline.Suppose you have the values p0, p1, p2 and p3 at respectively x=-1, x=0, x=1, and x=2. Then we can assign the values of f(0), f(1), f'(0) and f'(1) using the formulas below tointerpolate between p1 and p2.

f(0) = p_1

f(1) = p_2

f'(0) = \dfrac{p_2 - p_0}{2}

f'(1) = \dfrac{p_3 - p_1}{2}

Combining the last four formulas and the preceding four, we get:

a = -\tfrac{1}{2}p_0 + \tfrac{3}{2}p_1 - \tfrac{3}{2}p_2 + \tfrac{1}{2}p_3

b = p_0 - \tfrac{5}{2}p_1 + 2p_2 - \tfrac{1}{2}p_3

c = -\tfrac{1}{2}p_0 + \tfrac{1}{2}p_2

d = p_1

So our cubic interpolation formula becomes:

f(p_0,p_1,p_2,p_3,x) = (-\tfrac{1}{2}p_0 + \tfrac{3}{2}p_1 - \tfrac{3}{2}p_2 + \tfrac{1}{2}p_3)x^3 + (p_0 - \tfrac{5}{2}p_1 + 2p_2 - \tfrac{1}{2}p_3)x^2 + (-\tfrac{1}{2}p_0 + \tfrac{1}{2}p_2)x + p_1


The first and the last interval

We used the two points left of the interval and the two points right of the inverval as inputs for the interpolation function. But what if we want to interpolate between the first two or last two elements of a list? Then we have no p0 or no p3. The solution is to imagine an extra point at each end of the list. In other words,we have to make up a value for p0and p3 when interpolating the leftmost and rightmost interval respectively. Two ways to do this are:

  • Repeat the first and the last point.
    Left: p0 = p1
    Right: p3 = p2
  • Let the end point be in the middle of a line between the imaginary point and the point next to the end point.
    Left: p0 = 2p1 - p2
    Right: p3 = 2p2 - p1

Bicubic interpolation

Bicubic interpolation is cubic interpolation in two dimensions. I'll only consider the case where we want to interpolate a two dimensional grid. We can use the cubic interpolation formula to construct the bicubic interpolation formula.

Suppose we have the 16 points pij, with i and j going from 0 to 3 and with pij located at (i-1, j-1). Then we can interpolate the area [0,1] x [0,1] by first interpolating the four columns and then interpolating the results in the horizontal direction. The formula becomes:

g(x,y) = f(f(p_{00},p_{01},p_{02},p_{03},y), f(p_{10},p_{11},p_{12},p_{13},y), f(p_{20},p_{21},p_{22},p_{23},y), f(p_{30},p_{31},p_{32},p_{33},y),x)

Bicubic interpolation can be used to resize images. However, this is (currently) out of the scope of this article. Please don't ask me questions about that.

C++ implementation

#include <iostream>
#include <assert.h>

double cubicInterpolate (double p[4], double x) {
	return p[1] + 0.5 * x*(p[2] - p[0] + x*(2.0*p[0] - 5.0*p[1] + 4.0*p[2] - p[3] + x*(3.0*(p[1] - p[2]) + p[3] - p[0])));
}

double bicubicInterpolate (double p[4][4], double x, double y) {
	double arr[4];
	arr[0] = cubicInterpolate(p[0], y);   //根据作者说的,感觉应该是 x才对,为什么是y??
	arr[1] = cubicInterpolate(p[1], y);
	arr[2] = cubicInterpolate(p[2], y);
	arr[3] = cubicInterpolate(p[3], y);
	return cubicInterpolate(arr, x);   //y ???
}

double tricubicInterpolate (double p[4][4][4], double x, double y, double z) {
	double arr[4];
	arr[0] = bicubicInterpolate(p[0], y, z);
	arr[1] = bicubicInterpolate(p[1], y, z);
	arr[2] = bicubicInterpolate(p[2], y, z);
	arr[3] = bicubicInterpolate(p[3], y, z);
	return cubicInterpolate(arr, x);
}

double nCubicInterpolate (int n, double* p, double coordinates[]) {
	assert(n > 0);
	if (n == 1) {
		return cubicInterpolate(p, *coordinates);
	}
	else {
		double arr[4];
		int skip = 1 << (n - 1) * 2;
		arr[0] = nCubicInterpolate(n - 1, p, coordinates + 1);
		arr[1] = nCubicInterpolate(n - 1, p + skip, coordinates + 1);
		arr[2] = nCubicInterpolate(n - 1, p + 2*skip, coordinates + 1);
		arr[3] = nCubicInterpolate(n - 1, p + 3*skip, coordinates + 1);
		return cubicInterpolate(arr, *coordinates);
	}
}

int main () {
	// Create array
	double p[4][4] = {{1,3,3,4}, {7,2,3,4}, {1,6,3,6}, {2,5,7,2}};

	// Interpolate
	std::cout << bicubicInterpolate(p, 0.1, 0.2) << '\n';

	// Or use the nCubicInterpolate function
	double co[2] = {0.1, 0.2};
	std::cout << nCubicInterpolate(2, (double*) p, co) << '\n';
}

Bicubic interpolation polynomial

This section provides an alternative way to calculate bicubic interpolation. For most purposes this way is probably less practical and efficient than the way it is done above.

We can rewrite the formula for bicubic interpolation as a multivariate polynomial:

g(x,y) = \sum_{i=0}^3 \sum_{j=0}^3 a_{ij} x^i y^j

With these values for aij, the coefficients:

a_{00} = p_{11}

a_{01} = -\tfrac{1}{2}p_{10} + \tfrac{1}{2}p_{12}

a_{02} = p_{10} - \tfrac{5}{2}p_{11} + 2p_{12} - \tfrac{1}{2}p_{13}

a_{03} = -\tfrac{1}{2}p_{10} + \tfrac{3}{2}p_{11} - \tfrac{3}{2}p_{12} + \tfrac{1}{2}p_{13}

a_{10} = -\tfrac{1}{2}p_{01} + \tfrac{1}{2}p_{21}

a_{11} = \tfrac{1}{4}p_{00} - \tfrac{1}{4}p_{02} - \tfrac{1}{4}p_{20} + \tfrac{1}{4}p_{22}

a_{12} = -\tfrac{1}{2}p_{00} + \tfrac{5}{4}p_{01} - p_{02} + \tfrac{1}{4}p_{03} + \tfrac{1}{2}p_{20} - \tfrac{5}{4}p_{21} + p_{22} - \tfrac{1}{4}p_{23}

a_{13} = \tfrac{1}{4}p_{00} - \tfrac{3}{4}p_{01} + \tfrac{3}{4}p_{02} - \tfrac{1}{4}p_{03} - \tfrac{1}{4}p_{20} + \tfrac{3}{4}p_{21} - \tfrac{3}{4}p_{22} + \tfrac{1}{4}p_{23}

a_{20} = p_{01} - \tfrac{5}{2}p_{11} + 2p_{21} - \tfrac{1}{2}p_{31}

a_{21} = -\tfrac{1}{2}p_{00} + \tfrac{1}{2}p_{02} + \tfrac{5}{4}p_{10} - \tfrac{5}{4}p_{12} - p_{20} + p_{22} + \tfrac{1}{4}p_{30} - \tfrac{1}{4}p_{32}

a_{22} = p_{00} - \tfrac{5}{2}p_{01} + 2p_{02} - \tfrac{1}{2}p_{03} - \tfrac{5}{2}p_{10} + \tfrac{25}{4}p_{11} - 5p_{12} + \tfrac{5}{4}p_{13} + 2p_{20} - 5p_{21} + 4p_{22} - p_{23} - \tfrac{1}{2}p_{30} + \tfrac{5}{4}p_{31} - p_{32} + \tfrac{1}{4}p_{33}

a_{23} = -\tfrac{1}{2}p_{00} + \tfrac{3}{2}p_{01} - \tfrac{3}{2}p_{02} + \tfrac{1}{2}p_{03} + \tfrac{5}{4}p_{10} - \tfrac{15}{4}p_{11} + \tfrac{15}{4}p_{12} - \tfrac{5}{4}p_{13} - p_{20} + 3p_{21} - 3p_{22} + p_{23} + \tfrac{1}{4}p_{30} - \tfrac{3}{4}p_{31} + \tfrac{3}{4}p_{32} - \tfrac{1}{4}p_{33}

a_{30} = -\tfrac{1}{2}p_{01} + \tfrac{3}{2}p_{11} - \tfrac{3}{2}p_{21} + \tfrac{1}{2}p_{31}

a_{31} = \tfrac{1}{4}p_{00} - \tfrac{1}{4}p_{02} - \tfrac{3}{4}p_{10} + \tfrac{3}{4}p_{12} + \tfrac{3}{4}p_{20} - \tfrac{3}{4}p_{22} - \tfrac{1}{4}p_{30} + \tfrac{1}{4}p_{32}

a_{32} = -\tfrac{1}{2}p_{00} + \tfrac{5}{4}p_{01} - p_{02} + \tfrac{1}{4}p_{03} + \tfrac{3}{2}p_{10} - \tfrac{15}{4}p_{11} + 3p_{12} - \tfrac{3}{4}p_{13} - \tfrac{3}{2}p_{20} + \tfrac{15}{4}p_{21} - 3p_{22} + \tfrac{3}{4}p_{23} + \tfrac{1}{2}p_{30} - \tfrac{5}{4}p_{31} + p_{32} - \tfrac{1}{4}p_{33}

a_{33} = \tfrac{1}{4}p_{00} - \tfrac{3}{4}p_{01} + \tfrac{3}{4}p_{02} - \tfrac{1}{4}p_{03} - \tfrac{3}{4}p_{10} + \tfrac{9}{4}p_{11} - \tfrac{9}{4}p_{12} + \tfrac{3}{4}p_{13} + \tfrac{3}{4}p_{20} - \tfrac{9}{4}p_{21} + \tfrac{9}{4}p_{22} - \tfrac{3}{4}p_{23} - \tfrac{1}{4}p_{30} + \tfrac{3}{4}p_{31} - \tfrac{3}{4}p_{32} + \tfrac{1}{4}p_{33}


In Java code we can write this as:

public class CachedBicubicInterpolator
{
	private double a00, a01, a02, a03;
	private double a10, a11, a12, a13;
	private double a20, a21, a22, a23;
	private double a30, a31, a32, a33;

	public void updateCoefficients (double[][] p) {
		a00 = p[1][1];
		a01 = -.5*p[1][0] + .5*p[1][2];
		a02 = p[1][0] - 2.5*p[1][1] + 2*p[1][2] - .5*p[1][3];
		a03 = -.5*p[1][0] + 1.5*p[1][1] - 1.5*p[1][2] + .5*p[1][3];
		a10 = -.5*p[0][1] + .5*p[2][1];
		a11 = .25*p[0][0] - .25*p[0][2] - .25*p[2][0] + .25*p[2][2];
		a12 = -.5*p[0][0] + 1.25*p[0][1] - p[0][2] + .25*p[0][3] + .5*p[2][0] - 1.25*p[2][1] + p[2][2] - .25*p[2][3];
		a13 = .25*p[0][0] - .75*p[0][1] + .75*p[0][2] - .25*p[0][3] - .25*p[2][0] + .75*p[2][1] - .75*p[2][2] + .25*p[2][3];
		a20 = p[0][1] - 2.5*p[1][1] + 2*p[2][1] - .5*p[3][1];
		a21 = -.5*p[0][0] + .5*p[0][2] + 1.25*p[1][0] - 1.25*p[1][2] - p[2][0] + p[2][2] + .25*p[3][0] - .25*p[3][2];
		a22 = p[0][0] - 2.5*p[0][1] + 2*p[0][2] - .5*p[0][3] - 2.5*p[1][0] + 6.25*p[1][1] - 5*p[1][2] + 1.25*p[1][3] + 2*p[2][0] - 5*p[2][1] + 4*p[2][2] - p[2][3] - .5*p[3][0] + 1.25*p[3][1] - p[3][2] + .25*p[3][3];
		a23 = -.5*p[0][0] + 1.5*p[0][1] - 1.5*p[0][2] + .5*p[0][3] + 1.25*p[1][0] - 3.75*p[1][1] + 3.75*p[1][2] - 1.25*p[1][3] - p[2][0] + 3*p[2][1] - 3*p[2][2] + p[2][3] + .25*p[3][0] - .75*p[3][1] + .75*p[3][2] - .25*p[3][3];
		a30 = -.5*p[0][1] + 1.5*p[1][1] - 1.5*p[2][1] + .5*p[3][1];
		a31 = .25*p[0][0] - .25*p[0][2] - .75*p[1][0] + .75*p[1][2] + .75*p[2][0] - .75*p[2][2] - .25*p[3][0] + .25*p[3][2];
		a32 = -.5*p[0][0] + 1.25*p[0][1] - p[0][2] + .25*p[0][3] + 1.5*p[1][0] - 3.75*p[1][1] + 3*p[1][2] - .75*p[1][3] - 1.5*p[2][0] + 3.75*p[2][1] - 3*p[2][2] + .75*p[2][3] + .5*p[3][0] - 1.25*p[3][1] + p[3][2] - .25*p[3][3];
		a33 = .25*p[0][0] - .75*p[0][1] + .75*p[0][2] - .25*p[0][3] - .75*p[1][0] + 2.25*p[1][1] - 2.25*p[1][2] + .75*p[1][3] + .75*p[2][0] - 2.25*p[2][1] + 2.25*p[2][2] - .75*p[2][3] - .25*p[3][0] + .75*p[3][1] - .75*p[3][2] + .25*p[3][3];
	}

	public double getValue (double x, double y) {
		double x2 = x * x;
		double x3 = x2 * x;
		double y2 = y * y;
		double y3 = y2 * y;

		return (a00 + a01 * y + a02 * y2 + a03 * y3) +
		       (a10 + a11 * y + a12 * y2 + a13 * y3) * x +
		       (a20 + a21 * y + a22 * y2 + a23 * y3) * x2 +
		       (a30 + a31 * y + a32 * y2 + a33 * y3) * x3;
	}
}

This implementation can run faster than the implementation above when getValue is called multiple times for one call to updateCoefficients.

Similar implementations could be written for other dimensions than two.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值