本文是观看B站视频【卡尔曼滤波器】6_扩展卡尔曼滤波器_Extended Kalman Filter所做的截图和笔记。
前面讲的都是线性系统,他们可以用卡尔曼滤波器
进行预测。
对于非线性系统,可以将非线性系统线性化,就需要用到扩展卡尔曼滤波器
。
对于泰勒公式的讲解,请跳转参考这篇博客:泰勒公式_线性化。
对于一维度的非线性系统进行线性化,就是泰勒一阶展开
,对于高维度,就用到了雅各比矩阵
。
A
就是雅各比矩阵,他是随着时刻k
变化的,所以每次都要重新计算。
由于系统有误差,无法在真实点处进行线性化,所以f
就在上一时刻k-1
时刻的先验估计
x
k
−
1
−
\displaystyle\color{blue}x_{k-1}^-
xk−1−处进行线性化。
z
k
\displaystyle\color{blue}z_k
zk就在
x
k
~
\displaystyle\color{blue}\tilde{x_k}
xk~处进行线性化。
扩展卡尔曼滤波器
的五个公式: