本文的所涉及的知识点,如果有相关知识盲区,请参考:
微分方程通杀篇
如何区分线性系统与非线性系统
本文是观看B站视频【工程数学基础】2_线性化_泰勒级数_泰勒公式所作的笔记。
其中,
k
k
k 是第k个点,
n
n
n是指每个点有n维。
注意,上面的
X
⃗
\color{red}\vec{X}
X 是向量,表示多元(即多维,或多个特征),所以
(
X
⃗
−
X
k
⃗
)
\color{red}(\vec{X}-\vec{X_k})
(X−Xk) 也是向量。
公式中的:
∇
f
(
X
k
⃗
)
\color{red}\nabla{f(\vec{X_k})}
∇f(Xk) 是在
X
k
⃗
\vec{X_k}
Xk点处的梯度向量
。
例如某个三维点
X
k
⃗
=
(
x
1
,
x
2
,
x
3
)
\vec{X_k}=(x_1,x_2,x_3)
Xk=(x1,x2,x3)的梯度向量
为
∇
f
=
[
∂
f
∂
x
1
∂
f
∂
x
2
∂
f
∂
x
3
]
T
\nabla{f}=\begin{bmatrix} \frac{\partial{f}}{\partial{x_1}}&\frac{\partial{f}}{\partial{x_2}}&\frac{\partial{f}}{\partial{x_3}} \end{bmatrix}^T
∇f=[∂x1∂f∂x2∂f∂x3∂f]T,是列向量,不是雅各比矩阵
。
H
(
X
k
)
\color{red}H(X_k)
H(Xk) 是在
X
k
X_k
Xk点处的黑塞矩阵
。
来回顾一下雅各比矩阵
和黑塞矩阵
:
雅各比矩阵
是对多个
f
f
f 分别求多个维度的偏导,或者说
f
f
f 由
f
1
、
f
2
f_1、f_2
f1、f2 等多个子函数构成。
例如,有3维向量
X
⃗
=
(
x
1
,
x
2
,
x
3
)
\vec{X}=(x_1,x_2,x_3)
X=(x1,x2,x3),
f
f
f的两个子函数
f
1
f1
f1、
f
2
f2
f2 都是关于
x
1
,
x
2
,
x
3
x_1,x_2,x_3
x1,x2,x3 的函数,
那么雅各比矩阵
就是:
J
(
x
1
,
x
2
,
x
3
)
=
[
∂
f
1
∂
x
1
∂
f
1
∂
x
2
∂
f
1
∂
x
3
∂
f
2
∂
x
1
∂
f
2
∂
x
2
∂
f
2
∂
x
3
]
J(x_1,x_2,x_3)= \begin{bmatrix} \frac{\partial{f_1}}{\partial{x_1}}&\frac{\partial{f_1}}{\partial{x_2}}&\frac{\partial{f_1}}{\partial{x_3}} \\ \\ \frac{\partial{f_2}}{\partial{x_1}}&\frac{\partial{f_2}}{\partial{x_2}}&\frac{\partial{f_2}}{\partial{x_3}} \end{bmatrix}
J(x1,x2,x3)=⎣⎡∂x1∂f1∂x1∂f2∂x2∂f1∂x2∂f2∂x3∂f1∂x3∂f2⎦⎤
以3维点 X k ⃗ = ( x 1 , x 2 , x 3 ) \vec{X_k}=(x_1,x_2,x_3) Xk=(x1,x2,x3), n n n元因变量 f ⃗ = ( f 1 , f 2 , . . . , f n ) \vec{f}=(f_1,f_2,...,f_n) f=(f1,f2,...,fn)为例,自变量 X k ⃗ = ( x 1 , x 2 , x 3 ) \vec{X_k}=(x_1,x_2,x_3) Xk=(x1,x2,x3)有三个自变量,因变量 f ⃗ = ( f 1 , f 2 , . . . , f n ) \vec{f}=(f_1,f_2,...,f_n) f=(f1,f2,...,fn)中的每一个分量,都会随着自变量 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3的任意一个自变量的改变而改变:
- 当因变量 f f f为一元的情况,,即 f = f ( x 1 , x 2 , x 3 ) f=f(x_1,x_2,x_3) f=f(x1,x2,x3),函数的偏导数为 [ ∂ f ∂ x 1 ∂ f ∂ x 2 ∂ f ∂ x 3 ] T \begin{bmatrix} \frac{\partial{f}}{\partial{x_1}}&\frac{\partial{f}}{\partial{x_2}}&\frac{\partial{f}}{\partial{x_3}} \end{bmatrix}^T [∂x1∂f∂x2∂f∂x3∂f]T;
- 当因变量
f
f
f为二元的情况,即
f
⃗
=
f
(
x
1
,
x
2
,
x
3
)
=
(
f
1
,
f
2
)
\vec{f}=f(x_1,x_2,x_3)=(f_1,f_2)
f=f(x1,x2,x3)=(f1,f2),函数的偏导数为:
[ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 1 ∂ x 3 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ∂ f 2 ∂ x 3 ] \begin{bmatrix} \frac{\partial{f_1}}{\partial{x_1}}&\frac{\partial{f_1}}{\partial{x_2}}&\frac{\partial{f_1}}{\partial{x_3}} \\ \\ \frac{\partial{f_2}}{\partial{x_1}}&\frac{\partial{f_2}}{\partial{x_2}}&\frac{\partial{f_2}}{\partial{x_3}} \end{bmatrix} ⎣⎡∂x1∂f1∂x1∂f2∂x2∂f1∂x2∂f2∂x3∂f1∂x3∂f2⎦⎤ - 当因变量
f
f
f为n元的情况,即
f
⃗
=
f
(
x
1
,
x
2
,
x
3
)
=
(
f
1
,
f
2
,
.
.
.
,
f
n
)
\vec{f}=f(x_1,x_2,x_3)=(f_1,f_2,...,f_n)
f=f(x1,x2,x3)=(f1,f2,...,fn),函数的偏导数为:
[ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 1 ∂ x 3 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ∂ f 2 ∂ x 3 . . . . . . . . . ∂ f n ∂ x 1 ∂ f n ∂ x 2 ∂ f n ∂ x 3 ] \begin{bmatrix} \frac{\partial{f_1}}{\partial{x_1}}&\frac{\partial{f_1}}{\partial{x_2}}&\frac{\partial{f_1}}{\partial{x_3}} \\ \\ \frac{\partial{f_2}}{\partial{x_1}}&\frac{\partial{f_2}}{\partial{x_2}}&\frac{\partial{f_2}}{\partial{x_3}} \\ \\ ...&...&... \\ \\ \frac{\partial{f_n}}{\partial{x_1}}&\frac{\partial{f_n}}{\partial{x_2}}&\frac{\partial{f_n}}{\partial{x_3}} \end{bmatrix} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡∂x1∂f1∂x1∂f2...∂x1∂fn∂x2∂f1∂x2∂f2...∂x2∂fn∂x3∂f1∂x3∂f2...∂x3∂fn⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
总结一下,雅各比矩阵
和黑塞矩阵
的关系就是:
-
对一个函数 f \color{blue}f f求各个自变量 x 1 , , x 2 , . . . , x n \color{blue}x_1,,x_2,...,x_n x1,,x2,...,xn的
一阶偏导数
,得到的是一个向量 f ′ = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ∂ f ∂ x 3 ] T \color{blue}f'=\begin{bmatrix} \frac{\partial{f}}{\partial{x_1}}&\frac{\partial{f}}{\partial{x_2}}&\frac{\partial{f}}{\partial{x_3}} \end{bmatrix}^T f′=[∂x1∂f∂x2∂f∂x3∂f]T,他就是梯度向量
; -
然后把这个向量 f ′ \color{blue}f' f′的每个元素 ∂ f ∂ x 1 、 ∂ f ∂ x 2 、 ∂ f ∂ x 3 \color{blue}\frac{\partial{f}}{\partial{x_1}}、\frac{\partial{f}}{\partial{x_2}}、\frac{\partial{f}}{\partial{x_3}} ∂x1∂f、∂x2∂f、∂x3∂f,都分别看成是
一个函数(即因变量)
,对每个因变量 ∂ f ∂ x 1 、 ∂ f ∂ x 2 、 ∂ f ∂ x 3 \color{blue}\frac{\partial{f}}{\partial{x_1}}、\frac{\partial{f}}{\partial{x_2}}、\frac{\partial{f}}{\partial{x_3}} ∂x1∂f、∂x2∂f、∂x3∂f分别再求每个自变量 x 1 , , x 2 , . . . , x n \color{blue}x_1,,x_2,...,x_n x1,,x2,...,xn的一阶偏导数
,也就是对 f \color{blue}f f 求二阶导数
,这一步就是对 f ′ \color{blue}f' f′ 求雅克比矩阵
的操作,得到的结果就是黑塞矩阵
。
也就是说,雅克比矩阵
必须是多个函数
对每个自变量的一阶偏导得到的才叫雅克比矩阵
。如果你只有一个函数
,那么你对多个自变量求出来的一阶偏导叫梯度向量
。对一个函数
的每个自变量求二阶偏导数,就变成了黑塞矩阵
。
一句话来讲,黑塞矩阵
是由只有一个因变量、多个自变量的函数
对每个自变量的二阶偏导数
组成的方阵
。也可以理解为一阶导数向量的雅克比矩阵
。
线
性
化
都
符
合
叠
加
原
理
。
\color{red}线性化都符合叠加原理。
线性化都符合叠加原理。
x
˙
=
f
(
x
)
\dot{x}=f(x)
x˙=f(x)
{
(
1
)
x
1
,
x
2
是
解
;
(
2
)
x
3
=
k
1
x
1
+
k
2
x
2
,
(
k
1
,
k
2
是
常
数
)
(
3
)
x
3
是
解
。
\begin{cases} (1) x_1,x_2是解;\\\\ (2)x_3=k_1x_1+k_2x_2, (k_1,k_2是常数)\\\\ (3)x_3是解。 \end{cases}
⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧(1)x1,x2是解;(2)x3=k1x1+k2x2,(k1,k2是常数)(3)x3是解。
一个系统如果符合上面的三个条件,那么他就是线性系统。
例如:
x
¨
+
2
x
˙
+
2
x
=
0
\color{red}\ddot{x}+2\dot{x}+\sqrt{2}x=0
x¨+2x˙+2x=0 是线性系统
x
¨
+
2
x
˙
+
2
x
2
=
0
\color{red}\ddot{x}+2\dot{x}+\sqrt{2}x^2=0
x¨+2x˙+2x2=0 ,由于有平方项,所以不是线性系统
x
¨
+
s
i
n
(
x
˙
)
+
2
x
=
0
\color{red}\ddot{x}+sin{(\dot{x}})+\sqrt{2}x=0
x¨+sin(x˙)+2x=0 由于有正弦项,所以不是线性系统。
线性系统是没有截距的,线性系统要满足比例性和叠加性。
1.使用泰勒级数 线性化:
泰勒级数展开式如下:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
1
!
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
.
.
.
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
\color{red}f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n
f(x)=f(x0)+1!f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+...+n!f(n)(x0)(x−x0)n
x
0
x_0
x0是任取的一点,泰勒级数,就是在这一点附近展开。
如果
(
x
−
x
0
)
\color{red}(x-x_0)
(x−x0)趋近于0,那么
(
x
−
x
0
)
2
\color{red}(x-x_0)^2
(x−x0)2以及
(
x
−
x
0
)
n
\color{red}(x-x_0)^n
(x−x0)n都趋近于0,
那么就有:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
1
!
(
x
−
x
0
)
\color{red}f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)
f(x)=f(x0)+1!f′(x0)(x−x0)
上式中,
x
0
x_0
x0、
f
(
x
0
)
f(x_0)
f(x0)和
f
′
(
x
0
)
f'(x_0)
f′(x0)都是常数,因此,上式可以展开并写成如下形式:
f
(
x
)
=
常
数
k
1
+
常
数
k
2
(
x
−
常
数
x
0
)
=
k
1
+
k
2
(
x
−
x
0
)
=
k
1
+
k
2
x
−
k
2
x
0
=
k
x
+
b
f(x)=常数k_1+常数k_2(x-常数x_0)\\=k_1+k_2(x-x_0)\\=k1+k_2x-k_2x_0\\=kx+b
f(x)=常数k1+常数k2(x−常数x0)=k1+k2(x−x0)=k1+k2x−k2x0=kx+b
即:
f
(
x
)
=
k
x
+
b
\color{red}f(x)=kx+b
f(x)=kx+b
这样就把
f
(
x
)
\color{red}f(x)
f(x)线性化了。
注意,这里只是把
f
(
x
)
\color{red}f(x)
f(x)线性化了,并非说
f
(
x
)
\color{red}f(x)
f(x)是线性系统,它有截距b,不满足叠加原理。
2.泰勒级数线性化 实例:
例如
:
f
(
x
)
=
s
i
n
(
x
)
\color{red}f(x)=sin(x)
f(x)=sin(x)
把
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0 处展开,得到
f
(
x
)
=
s
i
n
(
x
0
)
+
c
o
s
(
x
0
)
(
x
−
x
0
)
\color{red}f(x)=sin(x_0)+cos(x_0)(x-x_0)
f(x)=sin(x0)+cos(x0)(x−x0)
当
x
0
=
0
x_0=0
x0=0时,
f
(
x
)
=
0
+
(
x
−
0
)
=
x
f(x)=0+(x-0)=x
f(x)=0+(x−0)=x
此时,如果
- 1.如果取
x
=
π
6
x=\frac{\pi}{6}
x=6π, 那么实际值
f
(
π
6
)
=
s
i
n
(
π
6
)
=
0.5
f(\frac{\pi}{6})=sin(\frac{\pi}{6})=0.5
f(6π)=sin(6π)=0.5
泰勒展开式求得的近似值: π 6 = 3.14 6 = 0.52 \frac{\pi}{6}=\frac{3.14}{6}=0.52 6π=63.14=0.52
误差: 0.52 − 0.5 0.5 ∗ 100 % = 4 % \frac{0.52-0.5}{0.5}*100\%=\color{red}4\% 0.50.52−0.5∗100%=4% - 2.如果取
x
=
π
4
x=\frac{\pi}{4}
x=4π, 那么实际值
f
(
π
4
)
=
s
i
n
(
π
4
)
=
0.707
f(\frac{\pi}{4})=sin(\frac{\pi}{4})=0.707
f(4π)=sin(4π)=0.707
泰勒展开式求得的近似值: π 4 = 3.14 4 = 0.785 \frac{\pi}{4}=\frac{3.14}{4}=0.785 4π=43.14=0.785
误差: 0.785 − 0.707 0.707 ∗ 100 % = 11 % \frac{0.785-0.707}{0.707}*100\%=\color{red}11\% 0.7070.785−0.707∗100%=11%
上面的两种情况都是 f ( x ) f(x) f(x)在 x 0 = 0 x_0=0 x0=0处泰勒级数展开,由于忽略了后面的很多级数 ( x − x 0 ) n \color{red}(x-x_0)^n (x−x0)n,所以是有误差的。并且,由于 π 6 \color{red}\frac{\pi}{6} 6π比 π 4 \color{red}\frac{\pi}{4} 4π更接近0,因此,当 x = π 6 \color{red}x=\frac{\pi}{6} x=6π时, f ( x ) \color{red}f(x) f(x)的取值相对更准确。
你可以想象一下,你把 f ( x ) f(x) f(x)在 x 0 = 0 x_0=0 x0=0处泰勒展开,那么 x = 0.1 x=0.1 x=0.1时用泰勒级数求得的近似值 f ( 0.1 ) f(0.1) f(0.1)当然比 x = 1 x=1 x=1时用泰勒级数求得的近似值 f ( 1 ) f(1) f(1)更加准确。
结论:
线 性 化 是 在 某 一 点 附 近 的 线 性 化 , 并 不 是 全 局 的 线 性 化 。 \color{red}线性化是在某一点附近的线性化,并不是全局的线性化。 线性化是在某一点附近的线性化,并不是全局的线性化。
x
¨
+
x
˙
+
1
x
=
1
(1)
\color{red}\ddot{x}+\dot{x}+\frac{1}{x}=1 \tag{1}
x¨+x˙+x1=1(1)
把上式在平衡点附近线性化。
平衡点就是
x
x
x所有的微分都为0的点:
x
¨
=
x
˙
=
0
(2)
\color{red}\ddot{x}=\dot{x}=0 \tag{2}
x¨=x˙=0(2)
3.一维空间的情况:
如果
x
\color{red}x
x 是一维的话,(2)化简为
1
x
=
1
\frac{1}{x}=1
x1=1
解得
x
=
1
\color{red}x=1
x=1
所以平衡点就是
x
0
=
1
\color{red}x_0=1
x0=1的这个点。
(zhz:线性化应该可以任意选择在某一点进行。选在平衡点线性化可以消除常数项,构造标准的状态方程。)
要在 x 0 = 1 \color{red}x_0=1 x0=1附近线性化:
那么在 x 0 = 1 \color{red}x_0=1 x0=1的邻域内的一点,用 x δ = x 0 + x d \color{red}x_{\delta}=x_0+x_d xδ=x0+xd 表示, 其中 x d \color{red}x_d xd 是一个很小的值。
(zhz:我们之所以要整出来一个 x δ \color{red}x_{\delta} xδ是因为 x \color{red}x x符号已经被占用了,为避免混淆,才用 x δ \color{red}x_{\delta} xδ代替我们一直用到的 x \color{red}x x表示。)
把
x
δ
=
x
0
+
x
d
\color{red}x_{\delta}=x_0+xd
xδ=x0+xd 代入(1)式,得到
x
δ
¨
+
x
δ
˙
+
1
x
δ
=
1
(3)
\color{red}\ddot{x_{\delta}}+\dot{x_{\delta}}+\frac{1}{x_{\delta}}=1 \tag{3}
xδ¨+xδ˙+xδ1=1(3)
我们先对里面的非线性项
1
x
δ
\color{red}\frac{1}{x_{\delta}}
xδ1进行线性化,即
f
(
x
δ
)
=
1
x
δ
(4)
f(x_{\delta})=\frac{1}{x_{\delta}} \tag{4}
f(xδ)=xδ1(4)
在
x
δ
=
x
0
x_{\delta}=x_0
xδ=x0处进行泰勒展开
f
(
x
δ
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
δ
−
x
0
)
(5)
f(x_{\delta})=f(x_0)+f'(x_0)(x_{\delta}-x_0) \tag{5}
f(xδ)=f(x0)+f′(x0)(xδ−x0)(5)
f
′
(
x
0
)
f'(x_0)
f′(x0)求解:
(
1
x
δ
)
′
=
−
1
x
δ
2
(\frac{1}{x_{\delta}})'=-\frac{1}{x_{\delta}^2}
(xδ1)′=−xδ21 , 代入(5)式,得到:
1
x
δ
=
1
x
0
+
−
1
x
0
2
x
d
\frac{1}{x_{\delta}}=\frac{1}{x_0}+\frac{-1}{x_0^2}x_d
xδ1=x01+x02−1xd
把
x
0
=
1
x_0=1
x0=1代入上式,得到
1
x
δ
=
1
−
x
d
(6)
\color{red}\frac{1}{x_{\delta}}=1-x_d \tag{6}
xδ1=1−xd(6)
上式就是把非线性项
1
x
δ
\color{red}\frac{1}{x_{\delta}}
xδ1进行线性化的结果。
由于
x
δ
=
x
0
+
x
d
\color{red}x_{\delta}=x_0+x_d
xδ=x0+xd ,所以有:
{
x
δ
¨
=
x
0
¨
+
x
d
¨
x
δ
˙
=
x
0
˙
+
x
d
˙
\color{red} \begin{cases} \ddot{x_{\delta}}=\ddot{x_0}+\ddot{x_d}\\ \\ \dot{x_{\delta}}=\dot{x_0}+\dot{x_d}\\ \end{cases}
⎩⎪⎨⎪⎧xδ¨=x0¨+xd¨xδ˙=x0˙+xd˙
又因为
x
0
x_0
x0是常数,所以
{
x
δ
¨
=
x
d
¨
x
δ
˙
=
x
d
˙
\color{red} \begin{cases} \ddot{x_{\delta}}=\ddot{x_d} \\ \\ \dot{x_{\delta}}=\dot{x_d} \\ \end{cases}
⎩⎪⎨⎪⎧xδ¨=xd¨xδ˙=xd˙
把上面两个化简结果代入(3)式
x
δ
¨
+
x
δ
˙
+
1
x
δ
=
1
\color{red}\ddot{x_{\delta}}+\dot{x_{\delta}}+\frac{1}{x_{\delta}}=1
xδ¨+xδ˙+xδ1=1,得到:
x
d
¨
+
x
d
˙
+
1
x
δ
=
1
(7)
\ddot{x_d}+\dot{x_d}+\frac{1}{x_{\delta}}=1 \tag{7}
xd¨+xd˙+xδ1=1(7)
由于
1
x
δ
\color{red}\frac{1}{x_{\delta}}
xδ1线性化后的结果为(6)式
1
x
δ
=
1
−
x
d
\color{red}\frac{1}{x_{\delta}}=1-x_d
xδ1=1−xd, 代入(7)式:得到
x
d
¨
+
x
d
˙
+
(
1
−
x
d
)
=
1
\ddot{x_d}+\dot{x_d}+(1-x_d)=1
xd¨+xd˙+(1−xd)=1
化简得到:
x
d
¨
+
x
d
˙
−
x
d
=
0
(8)
\color{red}\ddot{x_d}+\dot{x_d}-x_d=0 \tag{8}
xd¨+xd˙−xd=0(8)
上式就是线性化后的结果。
3.二维空间的情况:
上面讲了 x \color{red}x x 为一维的情况,这里来分析 x \color{red}x x 为二维的情况:
{ x ˙ 1 = f 1 ( x 1 , x 2 ) x ˙ 2 = f 2 ( x 1 , x 2 ) (AAA) \begin{cases} \dot x_1=f_1(x_1,x_2)\\ \dot x_2=f_2(x_1,x_2) \end{cases} \tag{AAA} {x˙1=f1(x1,x2)x˙2=f2(x1,x2)(AAA)
zhz:那么在平衡点
x
0
\color{red}x_0
x0的邻域内的一点,用
x
δ
=
x
0
+
x
d
\color{red}x_{\delta}=x_0+x_d
xδ=x0+xd 表示, 其中
x
d
\color{red}x_d
xd 是一个很小的值:
x
d
=
[
x
1
d
x
2
d
]
\color{red}x_d=\begin{bmatrix} {x_1}_d\\\\ {x_2}_d\end{bmatrix}
xd=⎣⎡x1dx2d⎦⎤
zhz:下面的分析为什么直接是
x
d
x_d
xd了,而不是和一维一样,分析
x
δ
\color{red}x_{\delta}
xδ ???
它在平衡点
x
0
\color{red}x_0
x0 附近可以表示为:
[
x
˙
1
d
x
˙
2
d
]
=
[
∂
f
1
∂
x
1
∂
f
1
∂
x
2
∂
f
2
∂
x
1
∂
f
2
∂
x
2
]
∣
x
=
x
0
∗
[
x
1
d
x
2
d
]
(BBB)
\begin{bmatrix} {\dot x_1}_d\\ {\dot x_2}_d\end{bmatrix}=\begin{bmatrix} \frac{\partial{f_1}}{\partial{x_1} }& \frac{\partial{f_1}}{\partial{x_2}} \\\\ \frac{\partial{f_2}}{\partial{x_1}}&\frac{\partial{f_2}}{\partial{x_2}}\end{bmatrix}_{|x=x_0}*\begin{bmatrix} {x_1}_d\\ {x_2}_d\end{bmatrix} \tag{BBB}
[x˙1dx˙2d]=⎣⎡∂x1∂f1∂x1∂f2∂x2∂f1∂x2∂f2⎦⎤∣x=x0∗[x1dx2d](BBB)
令:
{
x
1
=
x
x
2
=
x
˙
\color{red} \begin{cases} {x_1}=x \\ \\ {x_2}=\dot{x} \\ \end{cases}
⎩⎪⎨⎪⎧x1=xx2=x˙
(zhz:为什么要令
x
1
=
x
\color{red}{x_1}=x
x1=x ?)
那么就有:
{
x
1
˙
=
x
2
x
2
˙
=
x
¨
(9)
\color{red} \begin{cases} \dot {x_1}=x_2 \\ \\ \dot {x_2}=\ddot{x} \tag{9} \\ \end{cases}
⎩⎪⎨⎪⎧x1˙=x2x2˙=x¨(9)
回看前面的(1)式,即:
x
¨
+
x
˙
+
1
x
=
1
\color{red}\ddot{x}+\dot{x}+\frac{1}{x}=1
x¨+x˙+x1=1
把(1)式代入(9)的第二个式子,又由于
x
1
=
x
\color{red}{x_1}=x
x1=x, 所以:
x
2
˙
=
x
¨
=
1
−
1
x
−
x
˙
=
1
−
1
x
1
−
x
2
˙
\dot {x_2}=\ddot{x}=1-\frac{1}{x}-\dot{x}\\ =1-\frac{1}{x_1}-\dot{x_2}
x2˙=x¨=1−x1−x˙=1−x11−x2˙
因此:
{
x
1
˙
=
x
2
x
2
˙
=
1
−
1
x
1
−
x
2
(10)
\color{red} \begin{cases} \dot {x_1}=x_2 \\ \\ \dot {x_2}=1-\frac{1}{x_1}-x_2 \tag{10} \\ \end{cases}
⎩⎪⎨⎪⎧x1˙=x2x2˙=1−x11−x2(10)
回看前面分析,平衡点就是
x
\color{red}x
x所有的微分都为
0
\color{red}0
0 的点,前面的(2)式即
x
¨
=
x
˙
=
0
\color{red}\ddot{x}=\dot{x}=0
x¨=x˙=0, 所以就有:
{
x
1
˙
=
0
x
2
˙
=
0
(11)
\color{red} \begin{cases} \dot {x_1}=0 \\ \\ \dot {x_2}=0 \tag{11} \\ \end{cases}
⎩⎪⎨⎪⎧x1˙=0x2˙=0(11)
因此,平衡点
x
0
=
(
x
1
,
0
,
x
2
,
0
)
\color{red} x_0=(x_{1,0}, x_{2,0})
x0=(x1,0,x2,0) 为:
{
x
1
,
0
=
1
x
2
,
0
=
0
(12)
\color{red} \begin{cases} {x_{1,0}}=1 \\ \\ {x_{2,0}}=0 \tag{12} \\ \end{cases}
⎩⎪⎨⎪⎧x1,0=1x2,0=0(12)
由(10)式和(AAA)式,可得到:
{
f
1
=
x
2
f
2
=
1
−
1
x
1
−
x
2
(13)
\color{red} \begin{cases} {f_1}=x_2 \\ \\ {f_2}=1-\frac{1}{x_1}-x_2 \\ \end{cases} \tag{13}
⎩⎪⎨⎪⎧f1=x2f2=1−x11−x2(13)
把上面的
f
1
,
f
2
f_1,f_2
f1,f2 代入前面的(BBB)式:
[
x
˙
1
d
x
˙
2
d
]
=
[
∂
f
1
∂
x
1
∂
f
1
∂
x
2
∂
f
2
∂
x
1
∂
f
2
∂
x
2
]
∣
x
=
x
0
∗
[
x
1
d
x
2
d
]
(BBB)
\begin{bmatrix} {\dot x_1}_d\\ {\dot x_2}_d\end{bmatrix}=\begin{bmatrix} \frac{\partial{f_1}}{\partial{x_1} }& \frac{\partial{f_1}}{\partial{x_2}} \\\\ \frac{\partial{f_2}}{\partial{x_1}}&\frac{\partial{f_2}}{\partial{x_2}}\end{bmatrix}_{|x=x_0}*\begin{bmatrix} {x_1}_d\\ {x_2}_d\end{bmatrix} \tag{BBB}
[x˙1dx˙2d]=⎣⎡∂x1∂f1∂x1∂f2∂x2∂f1∂x2∂f2⎦⎤∣x=x0∗[x1dx2d](BBB)
并且把求解得到的平衡点(12)式的结果代入,就得到:
[
x
˙
1
d
x
˙
2
d
]
=
[
0
1
1
−
1
]
∗
[
x
1
d
x
2
d
]
(14)
\color{red}\begin{bmatrix} {\dot x_1}_d\\ \\{\dot x_2}_d\end{bmatrix}=\begin{bmatrix} 0&1\\\\ 1&-1\end{bmatrix}*\begin{bmatrix} {x_1}_d\\\\ {x_2}_d\end{bmatrix} \tag{14}
⎣⎡x˙1dx˙2d⎦⎤=⎣⎡011−1⎦⎤∗⎣⎡x1dx2d⎦⎤(14)
把上式的第二项列出来,即:
x
˙
2
d
=
x
1
d
−
x
2
d
(15)
\color{red} {\dot x_2}_d= {x_1}_d- {x_2}_d\tag{15}
x˙2d=x1d−x2d(15)
上式带回去还原为:
x
¨
d
=
x
d
−
x
˙
d
(16)
\color{red} {\ddot x_d}= x_d- \dot x_d \tag{16}
x¨d=xd−x˙d(16)
等式右边全部移到左边,就得到了和一维情况(8)式一样的最终结果:
x
d
¨
+
x
d
˙
−
x
d
=
0
\color{red}\ddot{x_d}+\dot{x_d}-x_d=0
xd¨+xd˙−xd=0