[Python] scikit-learn指max_error函数介绍和使用案例

max_error函数是scikit-learn中的一个度量,用于计算预测值与真实值之间的最大误差。文章通过实例展示了如何使用这个函数评估模型在完全拟合和非完美拟合情况下的性能。
摘要由CSDN通过智能技术生成

max_error函数介绍

max_error函数计算最大残差,这是一个捕捉预测值和真实值之间最坏情况误差的度量。在完全拟合的单输出回归模型中,训练集上的max_error将为0,尽管这在现实世界中极不可能发生,但该度量显示了模型拟合时的误差程度。

3.3. Metrics and scoring: quantifying the quality of predictions — scikit-learn 1.3.2 documentation

sklearn.metrics.max_error — scikit-learn 1.3.2 documentation

max_error使用案例

案例1

from sklearn.metrics import max_error
y_true = [3, 2, 7, 1]
y_pred = [9, 2, 7, 1]
max_error(y_true, y_pred)

输出:6

案例2

from sklearn.metrics import max_error
y_true = [3, 2, 7, 1]
y_pred = [4, 2, 7, 1]
max_error(y_true, y_pred)

输出:1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老狼IT工作室

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值