在很多的题目中,经常会遇到求解幂次的问题,当幂次比较小的时候,最后的结果也不会太大,不会造成溢出,使用库函数pow就可以解决,时间也还过得去;但是当幂次变得比较大的时候,直接计算次方,先不说效率问题,就是最后的结果也是无法保存的,所以必须在计算的过程中逐步取模。至于具体该怎么解决,可以借鉴矩阵快速幂的思想,传送门(),实际上也就是利用二进制的性质进行逐步二分优化,过程就不多说了,下面给出一份模板:
#define LL __int64
LL m;
//计算a*b % m,将b按二进制分解
LL FaMulti(LL a, LL b)
{
LL res = 0;
while(b)
{
if(b & 1)
{
res += a;
res %= m;
}
a += a;
a %= m;
b >>= 1;
}
return res;
}
// 计算a^b % m,将b按二进制分解
LL FaPow(LL a, LL b)
{
LL res = 1;
while(b)
{
if(b & 1)
{
res = FaMulti(res, a);
}
a = FaMulti(a, a);
b >>= 1;
}
return res;
}