ACM-快速幂乘

在很多的题目中,经常会遇到求解幂次的问题,当幂次比较小的时候,最后的结果也不会太大,不会造成溢出,使用库函数pow就可以解决,时间也还过得去;但是当幂次变得比较大的时候,直接计算次方,先不说效率问题,就是最后的结果也是无法保存的,所以必须在计算的过程中逐步取模。至于具体该怎么解决,可以借鉴矩阵快速幂的思想,传送门(),实际上也就是利用二进制的性质进行逐步二分优化,过程就不多说了,下面给出一份模板:

#define LL __int64
LL m;

//计算a*b % m,将b按二进制分解
LL FaMulti(LL a, LL b)
{
    LL res = 0;
    while(b)
    {
        if(b & 1)
        {
            res += a;
            res %= m;
        }
        a += a;
        a %= m;
        b >>= 1;
    }
    return res;
}

// 计算a^b % m,将b按二进制分解
LL FaPow(LL a, LL b)
{
    LL res = 1;
    while(b)
    {
        if(b & 1)
        {
            res = FaMulti(res, a);
        }
        a = FaMulti(a, a);
        b >>= 1;
    }
    return res;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值