目前视频结构化已经应用到安防监控中,主要是对视频中的人员、车辆目标进行结构化处理,能够提取出人员的年龄、性别、衣服颜色、是否戴眼镜等属性信息,车辆的车牌号码、车型、车辆颜色、挂件等属性信息。基于提取的属性信息可以进行人员、车辆的进一步比对分析,确定违法犯罪人员和违法车辆。
在平安城市、智慧城市等的火热建设下,视频监控和视频应用的需求在不断增加,视频监控行业市场规模保持快速增长。
庞大的监控视频数据加大了安防运维成本。如公共安全监控中主要关注的视频信息为:人员、车辆、行为。而传统视频监控中,如需获得某区域相关信息,则需从公共监控视频中百万级的目标库中(对应上千小时的高清视频)进行查找,查找速度慢,检索效率低。
随着算法不断升级与革新,公共安全领域对视频结构化需求的越来越旺盛,视频结构化现已大规模地得到应用。结构化的视频数据可以极大提升视频查找的速度,并能解决视频传输中的痛点问题——带宽压力,还可大幅降低视频存储容量问题。
1.目标检测算法实现
检测视频中出现的 (车辆/行人) 包括类型 {行人、汽车、公交车、卡车、三轮车、摩托车}
2.车牌识别算法实现
使用OCR技术完成基本的车牌识别功能
3.车型分析方案
分析车型,包括 粗类别 (120类) / 细类别(1500类)
4.行人结构化分析
基于以上4点完成算法闭环
目前我们已完成模块包括
人脸、人形属性分析:人脸识别 人脸跟踪 人脸角度、性别、年龄、人脸特征点信息、人脸清晰度、活体检测、人脸朝向,运动方向、骑自行车、骑摩托车等分析。
车辆、车牌属性分析:车型、车颜色、车头朝向、车牌识别。
实现效果图
目前的实现效果图
547691062@qq.com